
Large Language Model Post-Training
Formula5on and Algorithms

Ziniu Li

2025-03-26

The Chinese University of Hong Kong, Shenzhen

PKU Applied Math Lunch Seminar

2

Overview of This Talk

Evolu5on of Large Language Models

Formula5on and Key Proper5es of LLM Training

Our Research Contribu5ons

Key Scien5fic Insights

Part I: Overview of LLMs

4

LLMs and Transformers

“LLMs”

“are” Transformers

Token
Embedding

Next-token
embedding

Token
probabili5es

Input Predic5on

soUmax
“are”

Transformers perform next-token-predic.on and token genera.on

“cool”

“cool” “<eos>”

Model

5

Tasks that LLM can Solve

Email Wri5ng

Now, a single LLM can conduct all these func5ons

Travel Plan Summariza5on Code Genera5on

A Single Model for All Tasks.
How can do this?

7

LLM Training Framework
One can search “LLM Training Pipeline” and get the following figure:

But Why?

‣ What specific purpose does each training stage serve?
‣ Why do LLMs have to follow such training pipelines?

This talk provides some understanding and insights of LLM training

8

LLM Pre-training

“Textbook” teaches everything
(mul5-task learning)

Next-token Predic5on is enough for AGI

[h`ps://www.youtube.com/watch?v=YEUclZdj_Sc]

Ilya Sutskever
(Godfather of ChatGPT)

LLM Pre-training = Transformers + Next-token-Predic5on + Textbook Data

world knowledge
common sense
math

linguis5cs

coding

“Textbooks” can cover:

📚

9

Scaling Law

L =
A

Dα
+

B
Nβ

+ L0

L: Loss
D: dataset size
N: number of parameters
A, B: constants; : irreducible lossL0

model size

0

4500

9000

13500

18000

GPT-3 Llama-2 Llama-3 Qwen2.5
(2020) (2023) (2024) (2024)

300B
1.5T

15T
18T

dataset size

[Kaplan, Jared, et al. "Scaling laws for neural language models." arXiv:2001.08361.]

10

Pre-Training Hero: GPT-3

GPT-3 is trained unsupervisedly
but can beat zero-shot SOTA

GPT-3 can conduct few-shot (in-context)
learning and beat fine-tuned SOTA

[Brown, Tom, et al. "Language models are few-shot learners." Advances in neural informa:on processing systems 33 (2020): 1877-1901.]

11

From Classifica5on to Token Genera5on

Pre-trained LLMs (including GPT-3):
‣ Possess extensive knowledge and generate coherent text
‣ Fails to understanding user intent and solving tasks effec5vely

‣ GPT-3 was primarily evaluated on classifica.on tasks in 2020

‣ Token genera.on:

[ChatGPT and The Art of Post-Training. Barret Zoph & John Schulman. h`ps://docs.google.com/presenta5on/d/
11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p]

Cannot understand user’s ques5on

Repe55ve responses

https://docs.google.com/presentation/d/11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p
https://docs.google.com/presentation/d/11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p
https://docs.google.com/presentation/d/11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p

12

LLM Post-Training

Goal: make the model behave like an assistant and follow the right format

Base Model vs Post-Trained Model

Base model sample:

(Mistral 8x7B, via
together.xyz)

‣ Post-trained LLM:

[ChatGPT and The Art of Post-Training. Barret Zoph & John Schulman. h`ps://docs.google.com/presenta5on/d/
11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p]

https://docs.google.com/presentation/d/11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p
https://docs.google.com/presentation/d/11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p
https://docs.google.com/presentation/d/11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p

13

Summary of LLM Training Pipeline

Pre-training

Knowledge Acquisi5on📚

Post-training

Ability Reinforcement 🔨

14

Post-Training Techniques

Ability Enhancement

Supervised Fine-Tuning
(SFT)

Reinforcement Learning
(RL)

Post-Training

Instruc5on LearningGoal:

Approach:

Teacher LLM

Label

Teacher LLM

Reward

Ac5on / Response
Figure is from “Weak-to-strong generaliza5on: Elici5ng strong capabili5es with weak supervision."

15

Supervised Fine-tuning

Teacher

Label

Q: Can Geoffrey Hinton have a conversa5on
with George Washington？

A: The answer is No because Geoffrey
Hinton was born in 1947, while […]

Prompt

Label

SFT Data Example

LLMs learn to understand the
ques.on (task) and provide
relevant answers

max
θ

𝔼y∼p(⋅|x)[log fθ(y |x)]Objec5ve

LLM
: promptx : response/comple5on (label)y

: distribu5on of LLMfθ

: data distribu5on (from teacher)p

16

Reinforcement Learning

Teacher

Reward

Response

LLM

max
θ

𝔼y∼fθ(⋅|x)[r(x, y)]Objec5ve

Genera5on Verifica5onFramework

Q: How many ‘r’ in strawberry?

A: There is one ‘r’ in ‘stra’ and another ‘r’
in ‘berry’, so the answer is 2

Prompt

RL Data Example

LLM
Response

Teacher
Feedback

Reward = -1

LLMs learn to correct mistakes
and enhance confidence in
answering ques5ons

17

Discussion

Why is pre-training necessary? Why not proceed directly to post-training?

Why implement SFT before reinforcement learning?

‣ Knowledge density is sparse in post-training data (but rich in pre-training)
‣ LLMs with post-training solely cannot generalize well

💡

‣ Pre-trained LLM outputs lack good format for reliable RL evalua5on
‣ SFT establishes essen5al response forma@ng that enables RL op5miza5on💡

Part II: Preserving Output Diversity
in Supervised Fine-Turning

19

Revisi5ng SFT

Response Space

Well forma`edPrac5ce of SFT

😞

SFT aims to align pre-trained model outputs to RL/human-preferred format
(outputs that are easy to read, interpret, and verify)

(No diversity reduc5on)

Lose of diversity

Pre-trained LLM Poorly Forma`ed

Goal of SFT Well forma`ed😊

20

Output Diversity
Question: Marissa is hiking a 12-mile trail. She took 1 hour to walk the first 4 miles, then another
hour to walk the next two miles. If she wants her average speed to be 4 miles per hour, what speed
(in miles per hour) does she need to walk the remaining distance?
Answer: 6

Greater Diversity Leads to Explora5on of Be`er Solu5ons

(reward = -1)

(reward = +1)

21

SFT Reduces Model Output Diversity

Prompt Give me a single-digit number

Pre-trained LLM Pre-trained LLM + SFT

Response
Distribu5on

“near uniform” “biased toward 7”

 #1

Output Diversity

0 20 40 60 80

Pre-training SFTOutput
Diversity
Sta5s5cs

 #2 SFT reduces diversity by ~20%

[O’Mahony, Laura, et al. "A`ribu5ng mode collapse in the fine-tuning of large language models." ICLR 2024 Workshop. 2024.]

22

Related Issue: Model Homogeniza5on toward GPT-4

[ChatGPT and The Art of Post-Training. Barret Zoph & John Schulman. h`ps://docs.google.com/presenta5on/d/
11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p]

‣ “Small” companies use GPT-4 outputs as SFT data to fine-tune their models
‣ Fine-tuned models follow GPT-4’s style and behavior

https://docs.google.com/presentation/d/11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p
https://docs.google.com/presentation/d/11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p
https://docs.google.com/presentation/d/11KWCKUORnPpVMSY6vXgBeFSWo7fJcuGQ9yuR6vC1pzE/edit#slide=id.p

Proper5es

23

Let’s Try to Solve the Problem

Elements of SFT

Data

Model

Algorithm

Pre-trained with rich knowledge encoded

Limited Size and Coverage
(10B-100B in SFT v.s. 1T-10T in pre-training)

Minimizing cross-entropy (CE) loss

Comment

nothing to blame

not perfect but
cannot blame

is this good?

24

CE seems Effec5ve for …

Langauge Model “Coffee”“Tea”

Cross-Entropy Loss

Back-propaga5on Is CE Effec5ve for Genera.on?

“I like to drink”

Convolu5on Neural Network

Input Model Label

“Cat”“Dog”

Predic5on

Cross-Entropy Loss
Back-propaga5on

CE is Effec5ve for Classifica.on💡

25

Understanding Genera5on Tasks

Classifica5on Genera5on

𝒳 ↦ 𝒴
(func.on: many-to-one)

𝒳 ↦ Δ(𝒴)
(distribu.on: one-to-many)

Target

Remark for LLMs:
‣ responses are not unique

 (varia5on in formats, styles, or reasoning paths)
‣ (SFT) data is hard to cover all cases

Illustra5on

26

Theory of CE

min
θ

− ∑
(xi,yi)∼D

y⊤
i log fθ(yi |xi)

CE Loss (Empirical)

: input-label pair
: the condi5onal predic5on distribu5on

: parameters of neural network

(xi, yi)
fθ(y |x)
θ

CE Loss (Popula.on)

max
θ

𝔼x∼ρ𝔼y∼p(⋅|x) log fθ(y |x)

: prompt distribu5on
: the condi5onal data distribu5on to learn

ρ
p(⋅ |x)

Forward KL Divergence

min
θ

𝔼x∼ρ KL(p(⋅ |x), fθ(⋅ |x)) + constant

Equivalence

Distribu5on Matching

CE can be used to learn a distribu5on

If the data samples are “abundant”

Classifica5on
(one label sample
is enough)

SFT
(data is limited)

Pre-training
(huge data)

✅ ✅ ❎

27

Summary

Challenge:
We need to protect LLM’s output diversity during SFT

Understanding:
CE easily fits to the empirical data and loses the diversity

Goal:
Designing new formula5on and algorithm for SFT

28

Analyzing Cross-Entropy Loss

Se}ng: and y ∼ fθ(⋅ |x) fθ(i |x) =
exp(θi)

∑K
j=1 exp(θj)

Gradient of CE: assuming -th token is the labeli

Implica5on:

Target token (label)’s logit while other tokens’ logits ↑ ↓

29

Distribu5on Matching as Flow Transfer

Published as a conference paper at ICLR 2025

Supervised Fine-Tuning and the Cross-Entropy Method. To specialize in downstream tasks, LLM
relies on SFT after pre-training. This process involves using a supervised dataset with high-quality
prompt-response pairs (x, y), sampled from the prompt distribution ⇢ and conditional data distribution
p(y|x). The Cross Entropy (CE) loss is the de facto training objective for SFT, designed to maximize
the likelihood of the training data. Formally, this is expressed as:

min
✓

LCE(✓) = �Ex⇠⇢Ey⇠p(·|x)[log f✓(y|x)].

Here, the prompt distribution ⇢ is typically not modeled during SFT and can be treated as a constant;
for simplicity, we omit it when the context is clear. A key feature of this approach is that it exclusively
maximizes the likelihood of the observed data, disregarding alternative plausible responses.

3 CHALLENGES AND PRINCIPLES FOR SFT

Before exploring technical solutions, we establish guiding principles for SFT within the broader
context of LLM development. Importantly, SFT is rarely the final stage of LLM development;
subsequent phases such as preference learning (Rafailov et al., 2023; Azar et al., 2024; Wang et al.,
2024b), reinforcement learning (Li et al., 2024c; Shao et al., 2024), and advanced inference-time
strategies (Snell et al., 2024) heavily depend on output diversity to explore and identify high-quality
solutions. This reliance on diversity underscores a key challenge: while pre-trained LLMs inherently
produce diverse outputs due to their broad knowledge bases, standard SFT practices—particularly
the use of CE loss—often reduces this diversity (O’Mahony et al., 2024; Wang et al., 2024a). Such
reduction can lead to knowledge forgetting, aligning with the “alignment tax” phenomenon observed
in (Bai et al., 2022; Ouyang et al., 2022).

We argue that preserving output diversity during SFT can address these issues. Intuitively, the ability
of a model to generate diverse responses serves as an indicator of the richness of its retained knowledge.
By maintaining diversity, the model is compelled to consider alternative plausible responses, which in
turn necessitates that its internal parameters encode and retain relevant knowledge. To operationalize
this insight, we propose the following guiding principle for SFT:

Learn from the data while preserving diversity.
In the following sections, we present technical insights and solutions aimed at achieving this principle.

4 PROBABILITY TRANSFER THEORY

In this section, we draw insights into algorithm design by examining the dynamics of CE. We will
introduce a new theory of probability transfer. To illustrate this concept, we consider a simplified
setting, where the prompt x 2 X is fixed and given. We model the conditional distribution f✓(y|x) =
softmax(✓x) with ✓x 2 RK being the “logit” and K being the vocabulary size. Let y = i 2 [K]
denote the token class to be learned.

Revisiting CE. We begin by calculating the gradient of the CE loss for the given example:
�r✓LCE(✓) = [�f✓(1|x),�f✓(2|x), . . . , 1� f✓(i|x), . . . ,�f✓(K|x)]. (1)

This indicates that, except for the label class i, whose logit increases by 1� f✓(i|x), all other tokens
experience a logit decrease proportional to their probabilities.

What makes this behavior particularly interesting? We interpret it through a logit flow dynamics
perspective, where logits are redistributed among token classes during training. Let i-th token class
being the “target”, while other tokens being the “sources”. We have the following observation.
Proposition 1. The gradient of CE specifies a logit flow map: each source token j transfers f✓(j|x)
logits to the target token i. Formally,

�r✓LCE(✓) =
KX

j=1,j 6=i

wi j · ei j (2)

wi j = f✓(j|x)

ei j = [0 · · · 1|{z}
i-th position

· · · �1|{z}
j-th position

· · · 0]

3Example: fθ = [0.1,0.3,0.6] Label: #2

Gradient: g = [−0.1,0.7, − 0.6]
g = 0.1 * [−1 1 0] + 0.6 * [0 1 −1]Flow perspec5ve:

Logits flow from source tokens = Logits flow to target token

30

Limita5ons of CE

Limita5on 2: All-to-one Update

Limita5on 1: Unbounded Transfer

Published as a conference paper at ICLR 2025

ensuring that logits redistributed from source tokens equal those received by the target token:

Logits from source tokens =
KX

j=1,j 6=i

f✓(j|x)

= 1� f✓(i|x) = Logits to the target token.

Building on the above understanding, we will highlight the limitations of CE and introduce our
proposed techniques.

7

How to Design Auxiliary Variable?

4321 4321 43214321

CE GEM

all-to-one update sparse update

unbounded transfer adap]ve termina]on

distribu]on collapse diversity-keeping

Figure 1: Comparison of learning schemes: CE v.s. GEM (� = 0). The arrows illustrate the
probability movement directions during the learning process, with Token 3 as the target token.

Limitation 1 of CE: All-to-One Probability Transfer. CE loss implements a logit flow mechanism
where probability mass from all non-target tokens is transferred to the target token. This approach
penalizes all non-target tokens regardless of their semantic relevance or contextual appropriateness.
For example, in the sentence “I like coffee”, while “coffee” is the target, reducing the logit and proba-
bility of “tea”—a semantically related and contextually plausible token—may harm generalization.
This limitation is especially critical in LLMs, as they are extensively pre-trained and encode rich
knowledge across many tokens. The all-to-one flow dynamic disrupts these carefully learned token
relationships, potentially reducing output diversity and contributing to knowledge forgetting.

Proposed Technique 1: Sparse Update. To address this limitation, we propose a sparse update
strategy. Instead of considering all source tokens, we select only pivotal tokens for probability transfer.
For illustration, we introduce a simple approach: we identify the pivotal token as the one with the
highest model confidence: j 2 argmax f(·|x). The underlying intuition is clear: the model only
corrects its most confident prediction if it is incorrect (i.e., does not match the target label).

However, this technique alone is insufficient in the asymptotic case. As training progresses and
the pivotal token’s probability diminishes through repeated updates, the flow mechanism naturally
shifts to other high-probability tokens. This cascading effect eventually approaches the dense update
behavior of CE as probabilities of all source tokens are sequentially reduced. This observation
highlights the need for a principled approach to terminate probability transfer at an appropriate stage.

Limitation 2 of CE: Unbounded Probability Transfer. The CE optimization process lacks a
natural termination point for probability transfer. The logit flow continues indefinitely until all source
token probabilities approach zero, causing the distribution to collapse and concentrate entirely on the
target token. This represents an undesirable convergence point that eliminates distribution diversity.
Fundamentally, this issue stems from CE’s implicit assumption that observed data should be assigned
maximum likelihood, without preserving reasonable probability for alternative tokens.

Proposed Technique 2: Adaptive Termination.To prevent distribution collapse, we introduce an
intuitive stopping criterion: halt the probability transfer once the target token i becomes the most
probable token in the distribution. Formally, if i 2 argmax f(·|x), we stop further update. This
supports the assumption that while the observed data should be adjusted to increase its likelihood,
other possibilities should still be considered, so the probability of the observed data should not be
forced to 1. Our stopping rule is designed to ensure that, after learning, greedy decoding can output
the correct label. An additional advantage of this rule is that, due to early termination, it keeps the
resultant distribution close to its initial state, thereby mitigating forgetting.

The two techniques outlined above form the foundation for the initial prototype design of our proposed
algorithm, GEM (Game-theoretic Entropy Maximization). The meaning and rationale behind the
name will be explained in detail in Section 5. For reference, we outline its procedure below and
provide a visual illustration in Figure 1.

4

Procedure of CE

#1

#2

31

Proposed Solu5ons
Published as a conference paper at ICLR 2025

While the target token i /2 argmax f✓k(·|x), continue the following steps.
• Calculate the model’s best prediction j = argmax f(·|x)

• Decrease the logit for source token j by learning rate ⌘ and weight wi j :
✓k+1[j] = ✓k[j]� ⌘ ⇤ wi j

• Increase the logit for the target token i in a similar manner:
✓k+1[i] = ✓k[i] + ⌘ ⇤ wi j

While this prototype is conceptually sound and aligns with the guiding principle of SFT, it lacks the
flexibility needed to extend its ideas to neural network training scenarios. To address this limitation,
we have developed a more general mathematical framework that refines the approach, making it both
more elegant and adaptable. We will discuss this framework in detail in the next section.

5 GAME-THEORETIC FORMULATION

In this section, we present a mathematical framework for fine-tuning approaches that preserve
diversity. We begin by highlighting a key observation from Section 4: introducing a meta-level
mechanism helps govern the the logit flow, such as determining sparse updates and defining stopping
rules. Mathematically, this corresponds to the usage of an auxiliary variable. This insight motivates
the development of a framework that integrates such an auxiliary variable. We find that a game-
theoretic framework (Goodfellow et al., 2014; Jolicoeur-Martineau, 2019) is well-suited for this
purpose, as it naturally introduces an additional player.

Specifically, our proposed mathematical framework is formally presented as follows:

min
f

L(f, q) , ExEyreal⇠p(·|x)Eygene⇠q(·|x)

⇥
h
�
log f(ygene|x)� log f(yreal|x)

�⇤
(3)

max
q

Q(f, q) , ExEygene⇠q(·|x) [log f(y
gene

|x)] + � · H(q(·|x)). (4)

In this framework, the term yreal represents the supervised label in the dataset, while ygene cor-
responds to the model-generated output. For clarity, yreal aligns with the target token and ygene

aligns with the source token in the probability transfer framework. The function h is monotonically
increasing function (e.g., a linear function), and q is a distribution similar to f . Notably, q serves as
the auxiliary variable introduced to regulate the process, achieving the functions of sparse updates
and proper termination introduced in Section 4.

A simple explanation of our framework is that we aim to maximize the log-probability f for real
data while minimizing the log-probability probability for model-generated data, as expressed in
Equation (3). Simultaneously, we optimize the auxiliary variable q to enhance its performance by
treating log f as a objective function. However, this overview omits key insights into the underlying
approach. In the following section, we will provide a more detailed explanation of our framework.

5.1 UNDERSTANDING THE GAME

In this section, we explain the game-theoretic framework and connect it to the probability transfer
theory developed in Section 4. For clarity, we adopt the same toy setting as in Section 4 and calculate
the gradient with respect to ✓. For a specific sample where yreal = i, the gradient is given by:

�r✓L(f✓, q) =
KX

j=1,j 6=i

wi j · ei j , (5)

wi j = q(j|x)h0(log f✓(j|x)� log f✓(i|x)).

The form is similar to the CE flow in Proposition 1, but it introduces additional terms, q and h, to
enable greater flexibility in design. We will explore the design of h and q, and show that, in certain
cases, the framework can cover the CE formulation and the GEM prototype discussed in Section 4.

Design of h: The choice of the function h directly affects the magnitude of wij . If h(z) = z (a linear
function), we simply have h0(z) ⌘ 1, resulting in uniform weighting for probability adjustments.
This corresponds to the algorithmic design in Section 4. Inspired by (Jolicoeur-Martineau, 2019;
Sun et al., 2020; Rafailov et al., 2023), we also explore the design h(z) = log sigmoid(�z),

5

Published as a conference paper at ICLR 2025

ensuring that logits redistributed from source tokens equal those received by the target token:

Logits from source tokens =
KX

j=1,j 6=i

f✓(j|x)

= 1� f✓(i|x) = Logits to the target token.

Building on the above understanding, we will highlight the limitations of CE and introduce our
proposed techniques.

7

How to Design Auxiliary Variable?

4321 4321 43214321

CE GEM

all-to-one update sparse update

unbounded transfer adap]ve termina]on

distribu]on collapse diversity-keeping

Figure 1: Comparison of learning schemes: CE v.s. GEM (� = 0). The arrows illustrate the
probability movement directions during the learning process, with Token 3 as the target token.

Limitation 1 of CE: All-to-One Probability Transfer. CE loss implements a logit flow mechanism
where probability mass from all non-target tokens is transferred to the target token. This approach
penalizes all non-target tokens regardless of their semantic relevance or contextual appropriateness.
For example, in the sentence “I like coffee”, while “coffee” is the target, reducing the logit and proba-
bility of “tea”—a semantically related and contextually plausible token—may harm generalization.
This limitation is especially critical in LLMs, as they are extensively pre-trained and encode rich
knowledge across many tokens. The all-to-one flow dynamic disrupts these carefully learned token
relationships, potentially reducing output diversity and contributing to knowledge forgetting.

Proposed Technique 1: Sparse Update. To address this limitation, we propose a sparse update
strategy. Instead of considering all source tokens, we select only pivotal tokens for probability transfer.
For illustration, we introduce a simple approach: we identify the pivotal token as the one with the
highest model confidence: j 2 argmax f(·|x). The underlying intuition is clear: the model only
corrects its most confident prediction if it is incorrect (i.e., does not match the target label).

However, this technique alone is insufficient in the asymptotic case. As training progresses and
the pivotal token’s probability diminishes through repeated updates, the flow mechanism naturally
shifts to other high-probability tokens. This cascading effect eventually approaches the dense update
behavior of CE as probabilities of all source tokens are sequentially reduced. This observation
highlights the need for a principled approach to terminate probability transfer at an appropriate stage.

Limitation 2 of CE: Unbounded Probability Transfer. The CE optimization process lacks a
natural termination point for probability transfer. The logit flow continues indefinitely until all source
token probabilities approach zero, causing the distribution to collapse and concentrate entirely on the
target token. This represents an undesirable convergence point that eliminates distribution diversity.
Fundamentally, this issue stems from CE’s implicit assumption that observed data should be assigned
maximum likelihood, without preserving reasonable probability for alternative tokens.

Proposed Technique 2: Adaptive Termination.To prevent distribution collapse, we introduce an
intuitive stopping criterion: halt the probability transfer once the target token i becomes the most
probable token in the distribution. Formally, if i 2 argmax f(·|x), we stop further update. This
supports the assumption that while the observed data should be adjusted to increase its likelihood,
other possibilities should still be considered, so the probability of the observed data should not be
forced to 1. Our stopping rule is designed to ensure that, after learning, greedy decoding can output
the correct label. An additional advantage of this rule is that, due to early termination, it keeps the
resultant distribution close to its initial state, thereby mitigating forgetting.

The two techniques outlined above form the foundation for the initial prototype design of our proposed
algorithm, GEM (Game-theoretic Entropy Maximization). The meaning and rationale behind the
name will be explained in detail in Section 5. For reference, we outline its procedure below and
provide a visual illustration in Figure 1.

4

Technique 2: Sparse Update

Technique 1: Adap5ve Termina5on

Procedure of
Our Method #2

#1

greedy decoding can handle

32

Our Insight: Dimension Increase
Published as a conference paper at ICLR 2025

While the target token i /2 argmax f✓k(·|x), continue the following steps.
• Calculate the model’s best prediction j = argmax f(·|x)

• Decrease the logit for source token j by learning rate ⌘ and weight wi j :
✓k+1[j] = ✓k[j]� ⌘ ⇤ wi j

• Increase the logit for the target token i in a similar manner:
✓k+1[i] = ✓k[i] + ⌘ ⇤ wi j

While this prototype is conceptually sound and aligns with the guiding principle of SFT, it lacks the
flexibility needed to extend its ideas to neural network training scenarios. To address this limitation,
we have developed a more general mathematical framework that refines the approach, making it both
more elegant and adaptable. We will discuss this framework in detail in the next section.

5 GAME-THEORETIC FORMULATION

In this section, we present a mathematical framework for fine-tuning approaches that preserve
diversity. We begin by highlighting a key observation from Section 4: introducing a meta-level
mechanism helps govern the the logit flow, such as determining sparse updates and defining stopping
rules. Mathematically, this corresponds to the usage of an auxiliary variable. This insight motivates
the development of a framework that integrates such an auxiliary variable. We find that a game-
theoretic framework (Goodfellow et al., 2014; Jolicoeur-Martineau, 2019) is well-suited for this
purpose, as it naturally introduces an additional player.

Specifically, our proposed mathematical framework is formally presented as follows:

min
f

L(f, q) , ExEyreal⇠p(·|x)Eygene⇠q(·|x)

⇥
h
�
log f(ygene|x)� log f(yreal|x)

�⇤
(3)

max
q

Q(f, q) , ExEygene⇠q(·|x) [log f(y
gene

|x)] + � · H(q(·|x)). (4)

In this framework, the term yreal represents the supervised label in the dataset, while ygene cor-
responds to the model-generated output. For clarity, yreal aligns with the target token and ygene

aligns with the source token in the probability transfer framework. The function h is monotonically
increasing function (e.g., a linear function), and q is a distribution similar to f . Notably, q serves as
the auxiliary variable introduced to regulate the process, achieving the functions of sparse updates
and proper termination introduced in Section 4.

A simple explanation of our framework is that we aim to maximize the log-probability f for real
data while minimizing the log-probability probability for model-generated data, as expressed in
Equation (3). Simultaneously, we optimize the auxiliary variable q to enhance its performance by
treating log f as a objective function. However, this overview omits key insights into the underlying
approach. In the following section, we will provide a more detailed explanation of our framework.

5.1 UNDERSTANDING THE GAME

In this section, we explain the game-theoretic framework and connect it to the probability transfer
theory developed in Section 4. For clarity, we adopt the same toy setting as in Section 4 and calculate
the gradient with respect to ✓. For a specific sample where yreal = i, the gradient is given by:

�r✓L(f✓, q) =
KX

j=1,j 6=i

wi j · ei j , (5)

wi j = q(j|x)h0(log f✓(j|x)� log f✓(i|x)).

The form is similar to the CE flow in Proposition 1, but it introduces additional terms, q and h, to
enable greater flexibility in design. We will explore the design of h and q, and show that, in certain
cases, the framework can cover the CE formulation and the GEM prototype discussed in Section 4.

Design of h: The choice of the function h directly affects the magnitude of wij . If h(z) = z (a linear
function), we simply have h0(z) ⌘ 1, resulting in uniform weighting for probability adjustments.
This corresponds to the algorithmic design in Section 4. Inspired by (Jolicoeur-Martineau, 2019;
Sun et al., 2020; Rafailov et al., 2023), we also explore the design h(z) = log sigmoid(�z),

5

Procedure of
Our Method

What is the magic? Can we generalize this to neural network training?

Introduce an auxiliary variable (dimension increase) that
 implements the scheme of sparse update and adap5ve termina5on💡

33

Towards a Game Formula5on

High-level design: introduce an another player to the distribu5on matchingq

Intui5ve Understanding:

‣ : increase the likelihood on real data and decrease likelihood on the
generated data
f

‣ : increase the energy induced by with entropy regulariza5onq log f

Published as a conference paper at ICLR 2025

other possibilities should still be considered, so the probability of the observed data should not be
forced to 1. Our stopping rule is designed to ensure that, after learning, greedy decoding can output
the correct label. An additional advantage of this rule is that, due to early termination, it keeps the
resultant distribution close to its initial state, thereby mitigating forgetting.

The two techniques outlined above form the foundation for the initial prototype design of our proposed
algorithm, GEM (Game-theoretic Entropy Maximization). The meaning and rationale behind the
name will be explained in detail in Section 5. For reference, we outline its procedure below and
provide a visual illustration in Figure 1.

While the target token i /2 argmax f✓k(·|x), continue the following steps.
• Calculate the model’s best prediction j = argmax f(·|x)

• Decrease the logit for source token j by learning rate ⌘ and weight wi j :
✓k+1[j] = ✓k[j]� ⌘ ⇤ wi j

• Increase the logit for the target token i in a similar manner:
✓k+1[i] = ✓k[i] + ⌘ ⇤ wi j

While this prototype is conceptually sound and aligns with the guiding principle of SFT, it lacks the
flexibility needed to extend its ideas to neural network training scenarios. To address this limitation,
we have developed a more general mathematical framework that refines the approach, making it both
more elegant and adaptable. We will discuss this framework in detail in the next section.

5 GAME-THEORETIC FORMULATION

In this section, we present a mathematical framework for fine-tuning approaches that preserve
diversity. We begin by highlighting a key observation from Section 4: introducing a meta-level
mechanism helps govern the the logit flow, such as determining sparse updates and defining stopping
rules. Mathematically, this corresponds to the usage of an auxiliary variable. This insight motivates
the development of a framework that integrates such an auxiliary variable. We find that a game-
theoretic framework (Goodfellow et al., 2014; Jolicoeur-Martineau, 2019) is well-suited for this
purpose, as it naturally introduces an additional player.

Specifically, our proposed mathematical framework is formally presented as follows:

min
f

L(f, q) , ExEyreal⇠p(·|x)Eygene⇠q(·|x)

⇥
log f(ygene|x)� log f(yreal|x)

⇤
(3)

max
q

Q(f, q) , ExEygene⇠q(·|x) [log f(y
gene

|x)] + � · H(q(·|x)). (4)

In this framework, the term yreal represents the supervised label in the dataset, while ygene cor-
responds to the model-generated output. For clarity, yreal aligns with the target token and ygene

aligns with the source token in the probability transfer framework. The function h is monotonically
increasing function (e.g., a linear function), and q is a distribution similar to f . Notably, q serves as
the auxiliary variable introduced to regulate the process, achieving the functions of sparse updates
and proper termination introduced in Section 4.

A simple explanation of our framework is that we aim to maximize the log-probability f for real
data while minimizing the log-probability probability for model-generated data, as expressed in
Equation (3). Simultaneously, we optimize the auxiliary variable q to enhance its performance by
treating log f as a objective function. However, this overview omits key insights into the underlying
approach. In the following section, we will provide a more detailed explanation of our framework.

5.1 UNDERSTANDING THE GAME

In this section, we explain the game-theoretic framework and connect it to the probability transfer
theory developed in Section 4. For clarity, we adopt the same setting as in Section 4 and calculate the
gradient with respect to ✓. For a specific sample where yreal = i, the gradient is given by:

�r✓L(f✓, q) =
KX

j=1,j 6=i

wi j · ei j , (5)

5

34

Understanding the Game

main player

Published as a conference paper at ICLR 2025

then h0(z) = sigmoid(z). In this case, wi j becomes adaptive: it takes a higher value when
log f(yreal|x) > log f(ygene|x) and a lower value otherwise. This adaptability ensures that the
model focuses more on cases where it struggles to distinguish between real and generated data.

Design of q: Our design of q follows an optimization problem in Equation (4). Specifically, we have
the optimal solution:

argmax
q

Q(q, f) =

⇢
�j(x) with j = argmax fi(·|x) if � = 0
softmax(1/� ⇤ log f(y|x)) if � > 0 (6)

That is, q is a shifted distribution derived from f . This transformation is visualized in Figure 2.

Figure 2: Transformation from f to q by optimizing the problem in Equation (4).

Note that q serves as a “controller” for prioritizing source tokens in the logit flow viewpoint. It
determines both the selection of source tokens and the strength of their associated flows. When
� = 0, q = �j(x) (i.e., the Dirac distribution) selects the single token with the highest probability
in f , which corresponds exactly to the algorithm prototype in Section 4. When � = 1, q becomes
identical to f with h set to a linear function, reducing to the CE formulation. For intermediate
values � 2 (0, 1), q represents a soften distribution where high-probability modes become more
prominent, while low-probability regions are further suppressed. This results in reduced contribution
from minority tokens in the probability transfer, thereby protecting their probabilities. Thus, for small
� values, the framework encourages sparse updates and safeguards tokens that may not appear in the
current dataset but were learned during pre-training.

We clarify that while our framework shares a similar structure with GANs (Goodfellow et al., 2014;
Jolicoeur-Martineau, 2019), it has a totally different meaning. Specifically, GANs were originally
designed for image generation tasks, where a discriminator network is additionally introduced to
measure the distance between distributions of real and generated images. We do not follow this
storyline. Unlike in GANs, where measuring distances between image distributions is challenging,
computing distances between token distributions in language models is simple due to the discrete
nature of token distributions. As we have explained, the introduction of the variable q in our
framework is to control the direction and mangnitude of probability transfer during distribution
matching—an objective that is distinct from the goal of GANs.

5.2 THEORETICAL GUARANTEE

Building on our earlier illustrative analysis with a single data point, we now formally present a theory
with the real data distribution p.
Proposition 2. Assume h(z) = z in Equation (3). For a data distribution satisfying p(y|x) > 0, with
� > 0, the game in Equations (3) and (4) posses a unique Nash equilibrium point:

⇢
f? = softmax(� ⇤ log p)
q? = p (7)

Furthermore, f? corresponds to the optimal solution to the distribution matching problem (with
1/� = (� + 1)), which minimizes the reverse KL divergence with entropy regularization:

f? = argmin
f

Ex [DKL(f(·|x), p(·|x))� �H(f(·|x))] . (8)

This result provides an intuitive understanding of the distribution matching problem that our frame-
work addresses: it drives the distribution f close to p while encouraging the diversity through entropy
regularization. This is exactly the goal we set in Section 3. We note that our analysis relies on � > 0,
as the equilibrium point is unique in this scenario. For � = 0 and p is the Dirac distribution, we can
still apply the stopping criterion discussed in Section 4. However, the choice of f? is neither unique
nor analytically tractable, introducing additional complexities that we leave for future work.

6

: sparse updateβ → 0
: same as CEβ → 1

: uniform updateβ → ∞

meta-controller

Published as a conference paper at ICLR 2025

5 GAME-THEORETIC FORMULATION

In this section, we present a mathematical framework for fine-tuning approaches that preserve
diversity. We begin by highlighting a key observation from Section 4: introducing a meta-level
mechanism helps govern the the logit flow, such as determining sparse updates and defining stopping
rules. Mathematically, this corresponds to the usage of an auxiliary variable. This insight motivates
the development of a framework that integrates such an auxiliary variable. We find that a game-
theoretic framework (Goodfellow et al., 2014; Jolicoeur-Martineau, 2019) is well-suited for this
purpose, as it naturally introduces an additional player.

Specifically, our proposed mathematical framework is formally presented as follows:

min
f

L(f, q) , ExEyreal⇠p(·|x)Eygene⇠q(·|x)

⇥
log f(ygene|x)� log f(yreal|x)

⇤
(3)

max
q

Q(f, q) , ExEygene⇠q(·|x) [log f(y
gene

|x)] + � · H(q(·|x)). (4)

In this framework, the term yreal represents the supervised label in the dataset, while ygene cor-
responds to the model-generated output. For clarity, yreal aligns with the target token and ygene

aligns with the source token in the probability transfer framework. The function h is monotonically
increasing function (e.g., a linear function), and q is a distribution similar to f . Notably, q serves as
the auxiliary variable introduced to regulate the process, achieving the functions of sparse updates
and proper termination introduced in Section 4.

A simple explanation of our framework is that we aim to maximize the log-probability f for real
data while minimizing the log-probability probability for model-generated data, as expressed in
Equation (3). Simultaneously, we optimize the auxiliary variable q to enhance its performance by
treating log f as a objective function. However, this overview omits key insights into the underlying
approach. In the following section, we will provide a more detailed explanation of our framework.

5.1 UNDERSTANDING THE GAME

In this section, we explain the game-theoretic framework and connect it to the probability transfer
theory developed in Section 4. For clarity, we adopt the same setting as in Section 4 and calculate the
gradient with respect to ✓. For a specific sample where yreal = i, the gradient is given by:

�r✓L(f✓, q) =
KX

j=1,j 6=i

wi j · ei j , (5)

wi j = q(j|x).

The form is similar to the CE flow in Proposition 1, but it introduces additional terms, q and h, to
enable greater flexibility in design. We will explore the design of h and q, and show that, in certain
cases, the framework can cover the CE formulation and the GEM prototype discussed in Section 4.

Design of h: The choice of the function h directly affects the magnitude of wij . If h(z) = z (a linear
function), we simply have h0(z) ⌘ 1, resulting in uniform weighting for probability adjustments.
This corresponds to the algorithmic design in Section 4. Inspired by (Jolicoeur-Martineau, 2019;
Sun et al., 2020; Rafailov et al., 2023), we also explore the design h(z) = log sigmoid(�z),
then h0(z) = sigmoid(z). In this case, wi j becomes adaptive: it takes a higher value when
log f(yreal|x) > log f(ygene|x) and a lower value otherwise. This adaptability ensures that the
model focuses more on cases where it struggles to distinguish between real and generated data.

Design of q: Our design of q follows an optimization problem in Equation (4). Specifically, we have
the optimal solution:

argmax
q

Q(q, f) =

⇢
�j(x) with j = argmax fi(·|x) if � = 0
softmax(1/� ⇤ log f(y|x)) if � > 0 (6)

That is, q is a shifted distribution derived from f . This transformation is visualized in Figure 2.Note that q serves as a “controller” for prioritizing source tokens in the logit flow viewpoint. It
determines both the selection of source tokens and the strength of their associated flows. When
� = 0, q = �j(x) (i.e., the Dirac distribution) selects the single token with the highest probability
in f , which corresponds exactly to the algorithm prototype in Section 4. When � = 1, q becomes
identical to f with h set to a linear function, reducing to the CE formulation. For intermediate
values � 2 (0, 1), q represents a soften distribution where high-probability modes become more

6

flow transfer

controller

35

Connec5on with Probability Transfer

Reserve KL Minimiza5on Entropy Maximiza5onTerminology

Fit the data distribu5on Protect the output diversityRole

For , there are mul.ple Nash equilibrium points with non-closed-form
solu5ons → future work

β = 0

Published as a conference paper at ICLR 2025

Figure 2: Transformation from f to q by optimizing the problem in Equation (4).

prominent, while low-probability regions are further suppressed. This results in reduced contribution
from minority tokens in the probability transfer, thereby protecting their probabilities. Thus, for small
� values, the framework encourages sparse updates and safeguards tokens that may not appear in the
current dataset but were learned during pre-training.

We clarify that while our framework shares a similar structure with GANs (Goodfellow et al., 2014;
Jolicoeur-Martineau, 2019), it has a totally different meaning. Specifically, GANs were originally
designed for image generation tasks, where a discriminator network is additionally introduced to
measure the distance between distributions of real and generated images. We do not follow this
storyline. Unlike in GANs, where measuring distances between image distributions is challenging,
computing distances between token distributions in language models is simple due to the discrete
nature of token distributions. As we have explained, the introduction of the variable q in our
framework is to control the direction and mangnitude of probability transfer during distribution
matching—an objective that is distinct from the goal of GANs.

5.2 THEORETICAL GUARANTEE

Building on our earlier illustrative analysis with a single data point, we now formally present a theory
with the real data distribution p.

Proposition 2. For a data distribution satisfying p(y|x) > 0, with � > 0, the game in Equations (3)
and (4) posses a unique Nash equilibrium point:

⇢
f? = softmax(� ⇤ log p)
q? = p (7)

Furthermore, f? corresponds to the optimal solution to the distribution matching problem (with
1/� = (� + 1)), which minimizes the reverse KL divergence with entropy regularization:

f? = argmin
f

Ex [DKL(f(·|x), p(·|x))� �H(f(·|x))] . (8)

This result provides an intuitive understanding of the distribution matching problem that our frame-
work addresses: it drives the distribution f close to p while encouraging the diversity through entropy
regularization. This is exactly the goal we set in Section 3. We note that our analysis relies on � > 0,
as the equilibrium point is unique in this scenario. For � = 0 and p is the Dirac distribution, we can
still apply the stopping criterion discussed in Section 4. However, the choice of f? is neither unique
nor analytically tractable, introducing additional complexities that we leave for future work.

We note that Proposition 3 also has an important computational implication. While the distribution
matching problem in Equation (8) is theoretically well-defined, it is computationally intractable in
practice. In contrast, our game-theoretic formulation provides a feasible alternative. To understand
why, consider the decomposition of the reverse KL divergence:

DKL(f(·|x), p(·|x)) =
X

y

f(y|x) log
f(y|x)

p(y|x)
=

X

y

f(y|x) log f(y|x)�
X

y

f(y|x) log p(y|x).

In practice, we only have access to finite samples drawn from p rather than direct knowledge of
log p(y|x). Consequently, the term

P
y f(y|x) log p(y|x) cannot be easily estimated from finite

samples, rendering the formulation in Equation (8) impractical. This difficulty contrasts with the
CE formulation, which corresponds to a forward KL divergence that can be easily estimated from

7

36

Training Algorithm

Published as a conference paper at ICLR 2025

finite samples.3 We note that a similar situation arises in GANs (Goodfellow et al., 2014), where the
game-theoretic approach effectively solves the Jensen-Shannon divergence minimization problem,
even though the Jensen-Shannon divergence itself cannot be directly estimated from data samples.

5.3 TRAINING ALGORITHM: GEM

In this section, we present a algorithm for training neural networks within our framework. For clarity,
in the main text, we state the token-level version, where f(y|x) denotes the one-step conditional
distribution, while the extension to the sequence-level is provided in Appendix B. Specifically, we
parameterize f✓ using a Transformer and optimize its parameter ✓ directly. The overall algorithm
is outlined in Algorithm 1, which incorporates two key features: single-model optimization and
variance-reduced gradient estimation. These features ensure that our algorithm is highly scalable,
requiring nearly the same GPU memory and computational speed as optimizing the standard CE loss.

Algorithm 1 GEM

Input: Dataset D = {(xi, yreali)}
1: for iteration k = 1, . . . ,K do
2: Set qk = softmax(1/� ⇤ log f✓k)
3: Loss LGEM(✓) =

P
i

P
ygene qk(y

gene
|xi) · h

�⇥
log f✓(ygene|xi)� log f✓(yreali |xi)

⇤�

4: Update ✓k+1 = ✓k � ⌘ ·r✓LGEM(✓) |✓=✓k
Output: Generative model f✓K+1

Single-Model Optimization. Recall that we have a closed-form solution for q (see Equation (4)),
which significantly simplifies the training procedure. Specifically, the update rules are as follows:

⇢
f✓k+1 = f✓k �r✓L(f✓, qk) |✓=✓k
qk+1 = argmaxq Q(f✓k+1 , q) = softmax(1/� ⇤ log f✓k+1)

Specifically, q can be computed simply by shifting the logits of f✓, eliminating the need to maintain a
separate network for q. This reduces the memory burden of training. In contrast, GANs require an
additional neural network (i.e., the discriminator), which must be trained alongside the main model.

Variance-reduced Gradient Estimation. Building on the above observation, we slightly adapt the
notation to define the loss function. Let ✓ denote the parameters of the distribution f . Given training
samples (xi, yreali), the loss is defined as:

LGEM(✓) =
X

i

X

ygene

qk(y
gene

|xi) · h
�⇥
log f✓(y

gene
|xi)� log f✓(y

real
i |xi)

⇤�
.

A notable feature is that it computes the true expectation over qk. This reduces the variance of the
gradient estimator and improves the training stability. This again differs from GANs, where stochastic
gradient estimation introduces randomness from both the data distribution p and the generated
distribution q. We note that these optimization properties arise from the fact that distributions in
LLMs have finite support, while GANs typically operate in continuous domains.

6 EXPERIMENTS

In this section, we present experiments to validate the effectiveness of the proposed framework. Our
experiments are designed to demonstrate that GEM achieves comparable downstream performance
to CE while offering two additional benefits. First, by preserving diversity, GEM generates diverse
outputs during inference, thereby improving test-time scaling performance. Second, preserving
diversity also helps mitigate forgetting, enabling GEM to reduce the alignment tax.

Set-up. We fine-tune the pre-trained Llama-3.1-8B model with the UltraFeedback dataset (Cui
et al., 2024). This dataset contains prompts from instruction datasets like Evol-Instruct and UltraChat,

3To clarify a common point of confusion regarding divergence functions: in the context of LLMs, since
tokens are discrete, both the forward and reverse KL divergences are relatively easy to optimize, when properly
estimated, and converge to the same solution. This differs from GANs, where the optimization involves images,
and different divergence functions typically lead to different solutions in practice. However, when entropy
regularization is involved, the forward and reverse KL divergences lead to different optimal solutions regardless
of the optimization difficulty. For a more detailed discussion, please refer to Appendix D.

8

Idea: block-wise gradient-descent and coordinate descent

Feature 1: Single-model op5miza5on

There is no need of storing and explicit training of q

Feature 2: Variance-reduced gradient es5ma5on

Published as a conference paper at ICLR 2025

finite samples.3 We note that a similar situation arises in GANs (Goodfellow et al., 2014), where the
game-theoretic approach effectively solves the Jensen-Shannon divergence minimization problem,
even though the Jensen-Shannon divergence itself cannot be directly estimated from data samples.

5.3 TRAINING ALGORITHM: GEM

In this section, we present a algorithm for training neural networks within our framework. For clarity,
in the main text, we state the token-level version, where f(y|x) denotes the one-step conditional
distribution, while the extension to the sequence-level is provided in Appendix B. Specifically, we
parameterize f✓ using a Transformer and optimize its parameter ✓ directly. The overall algorithm
is outlined in Algorithm 1, which incorporates two key features: single-model optimization and
variance-reduced gradient estimation. These features ensure that our algorithm is highly scalable,
requiring nearly the same GPU memory and computational speed as optimizing the standard CE loss.

Algorithm 1 GEM

Input: Dataset D = {(xi, yreali)}
1: for iteration k = 1, . . . ,K do
2: Set qk = softmax(1/� ⇤ log f✓k)
3: Loss LGEM(✓) =

P
i

P
ygene qk(y

gene
|xi) · h

�⇥
log f✓(ygene|xi)� log f✓(yreali |xi)

⇤�

4: Update ✓k+1 = ✓k � ⌘ ·r✓LGEM(✓) |✓=✓k
Output: Generative model f✓K+1

Single-Model Optimization. Recall that we have a closed-form solution for q (see Equation (4)),
which significantly simplifies the training procedure. Specifically, the update rules are as follows:

⇢
f✓k+1 = f✓k �r✓L(f✓, qk) |✓=✓k
qk+1 = argmaxq Q(f✓k+1 , q) = softmax(1/� ⇤ log f✓k+1)

Specifically, q can be computed simply by shifting the logits of f✓, eliminating the need to maintain a
separate network for q. This reduces the memory burden of training. In contrast, GANs require an
additional neural network (i.e., the discriminator), which must be trained alongside the main model.

Variance-reduced Gradient Estimation. Building on the above observation, we slightly adapt the
notation to define the loss function. Let ✓ denote the parameters of the distribution f . Given training
samples (xi, yreali), the loss is defined as:

LGEM(✓) =
X

i

X

ygene

qk(y
gene

|xi) ·
⇥
log f✓(y

gene
|xi)� log f✓(y

real
i |xi)

⇤
.

A notable feature is that it computes the true expectation over qk. This reduces the variance of the
gradient estimator and improves the training stability. This again differs from GANs, where stochastic
gradient estimation introduces randomness from both the data distribution p and the generated
distribution q. We note that these optimization properties arise from the fact that distributions in
LLMs have finite support, while GANs typically operate in continuous domains.

6 EXPERIMENTS

In this section, we present experiments to validate the effectiveness of the proposed framework. Our
experiments are designed to demonstrate that GEM achieves comparable downstream performance
to CE while offering two additional benefits. First, by preserving diversity, GEM generates diverse
outputs during inference, thereby improving test-time scaling performance. Second, preserving
diversity also helps mitigate forgetting, enabling GEM to reduce the alignment tax.

Set-up. We fine-tune the pre-trained Llama-3.1-8B model with the UltraFeedback dataset (Cui
et al., 2024). This dataset contains prompts from instruction datasets like Evol-Instruct and UltraChat,

3To clarify a common point of confusion regarding divergence functions: in the context of LLMs, since
tokens are discrete, both the forward and reverse KL divergences are relatively easy to optimize, when properly
estimated, and converge to the same solution. This differs from GANs, where the optimization involves images,
and different divergence functions typically lead to different solutions in practice. However, when entropy
regularization is involved, the forward and reverse KL divergences lead to different optimal solutions regardless
of the optimization difficulty. For a more detailed discussion, please refer to Appendix D.

8

We use the exact distribu5on (in GANs, stochas5c approxima5on is used)

Op5miza5on with the
token space (discrete)

37

Discussion: Difference with GANs

GAN
(genera5ve adversarial network)

GEM
(game-theore5c entropy maximiza5on)

Task Image Genera5on Text Genera5on

Idea Introduc5on of discriminator Introduc5on of flow-controller

Computa.on
Complexity

High Low

Challange Es5ma5on the distance
among two images is hard

Overfi}ng the data and
losing output diversity

38

Test-Time Scaling

GEM requires about 2x less sampling budget for comparable performance

‣ Evalua5on Method: Best-of-N Sampling

‣ Model: Llama-3.1-8B; Dataset: Ultrafeedback

Published as a conference paper at ICLR 2025

≈2x efficiency≈2x efficiency

(a) Chat (b) Code generation

Figure 4: Performance of test-time scaling. The results demonstrate that GEM achieves better perfor-
mance with the same sampling budget and is more efficient in reaching comparable performance.

and responses generated by models such as GPT-4 and Llama-2-7B/13B/70B-Chat. Following (Yu
et al., 2023; Liu et al., 2023; Cui et al., 2024), we set the learning rate to 2 ⇥ 10�5, employing a
cosine learning rate decay schedule, and use a macro batch size of 128. The maximum sequence
length, encompassing both the prompt and response, is set to 2,048 tokens. Models are trained for
three epochs. Detailed experimental settings are described in Appendix E.

We implement GEM with � = 0.7, using the log sigmoid function for h, as it provides more
adaptivity than the linear function. We note that the linear function also works in practice, but the
log sigmoid function yields slightly better performance. Thus, for ease presentation, we report
only the performance with the log sigmoid function unless mentioned. Our primary baseline is the
standard CE loss. Additionally, we explore a variant of CE incorporating a weight decay of 0.1, which
has been commonly used in previous studies (Ouyang et al., 2022; Bai et al., 2022). We refer to this
approach as CE + WD. The NEFT method (Jain et al., 2023), which perturbs the input embedding
with random noise in fine-tuning to mitigate overfitting, has also been implemented.

6.1 IMPROVING DIVERSITY AND TEST-TIME SCALING

Figure 3: Enhancing output diversity
boosts the win rate when using BoN.

In this section, we demonstrate that through implicit entropy
maximization, GEM enhances output diversity. This is evi-
dent from the entropy values of the generative distribution:
0.42 (CE), 0.41 (CE + WD), 0.43 (NEFT), and 0.76 (GEM).
Consequently, GEM is more likely to sample diverse solu-
tions and has a higher chance of identifying better solutions
during inference through repeated sampling. This aligns with
the recent trend of test-time scaling (Snell et al., 2024; Brown
et al., 2024; Wu et al., 2024). We illustrate this benefit us-
ing two tasks: chat and code generation, while mathematical
reasoning tasks are explored in Appendix F.

Chat. We assess the model’s chat ability using the best-
of-N sampling strategy. We prompt the trained models to
answer 805 questions from the AlpacaEval dataset (Li
et al., 2023). For each question, the model generates 32 responses, from which a reward model selects
the best response. We employ the reward model FsfairX-LLaMA3-RM-v0.14, which has top
performance on RewardBench (Lambert et al., 2024). The selected response is compared with
GPT-4’s response with the win rate reported in Figure 4 (a).

The evaluation reveals that weight decay does not lead to performance improvements. On the other
hand, NEFT shows strong performance, partly attributed to its longer responses, as highlighted in
(Jain et al., 2023). However, GEM outperforms CE, with a 3.1-point (6.6% relative) increase in win
rate. Additionally, we note that GEM achieves comparable performance to CE while requiring about
2x fewer sampling costs. To further understand this improvement, we evaluate output diversity using

4https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1

9

RLHF Alignment (Chat) Code Genera5on

39

Math Reasoning

GEM improves the performance limit of RL training

[h`ps://tangible-polo-203.no5on.site/]

same model & same SFT dataset

[Li, Ziniu, et al. "Remax: A simple, effec5ve, and efficient
reinforcement learning method for aligning large
language models." ICML 2024.]

‣ Task: op5mize CoT (reasoning steps)
to answer math ques5ons

‣ Reward: accuracy of final reward

‣ RL Algo: ReMax

‣ Model: Qwen-2.5-3B

40

Alignment Tax

GEM fine-tunes the model with 83% less alignment tax

Published as a conference paper at ICLR 2025

(a) Chat (b) Code generation

Figure 4: Performance of test-time scaling. The results demonstrate that GEM achieves better perfor-
mance with the same sampling budget and is more efficient in reaching comparable performance.

ARC GSM8K HellaSwag MMLU TruthfulQA Winogrande

Llama3.1-8B

Figure 5: Performance on tasks from the OpenLLM leaderboard. The results indicate that GEM
outperforms CE, demonstrating a lower alignment tax.

In this task, we observe that for pass@100, weight decay slightly improves the performance of
CE, increasing it from 75.5 to 76.6, while NEFT shows no significant improvement, maintaining a
performance of 75.6. In contrast, GEM achieves a 7-point improvement, reaching a performance of
82.5, which represents a 9.3% relative increase. Furthermore, GEM proves to be highly efficient in
test-time scaling, requiring only about half the sampling budget to achieve comparable performance.

We note that in our experiments, the performance using BON or pass rate serves as an estimate of self-
improvement. Specifically, high-quality self-generated samples produced by GEM can be distilled
back into the model, enhancing its zero-shot performance (see (Sessa et al., 2024)). Therefore, we
believe GEM can exhibit a more effective scaling in post-training, a topic we plan to explore in future
work. We also note that in the above evaluation, GEM enhances output diversity without sacrificing
its direct generation performance: in chat, CE (24.5) vs. GEM (24.9), and in code generation, CE
(32.7) vs. GEM (32.6). This contrasts with other techniques, which often increase diversity at the
cost of performance degradation; see Appendix D for further discussion.

6.2 MITIGATING FORGETTING AND REDUCING ALIGNMENT TAX

Figure 6: Staying close to the pre-
trained model helps mitigate forgetting.

In this section, we show that GEM also helps mitigate
forgetting and reduce alignment tax. We evaluate the mod-
els across six tasks: ARC, GSM8K, HellaSwag, MMLU,
TruthfulQA, and WinoGrande, as listed on the OpenLLM
leaderboard. Results are presented in Figure 5.

We observe that after SFT, performance declines on most
tasks for the baseline models, with CE showing the most sig-
nificant drops. However, GEM exhibits different behavior:
for tasks such as ARC and HellaSwag, performance does
not decrease. On average across six tasks, GEM shows an
80% reduction in alignment tax, with a 0.3-point drop for
GEM compared to a 1.5-point drop for CE. This behavior
aligns with our method, which introduces q to encourage
sparse updates of tokens and prevent forgetting. Further
validation can be seen by examining the distance from the pre-trained model. Specifically, we measure

9

Published as a conference paper at ICLR 2025

(a) Chat (b) Code generation

Figure 4: Performance of test-time scaling. The results demonstrate that GEM achieves better perfor-
mance with the same sampling budget and is more efficient in reaching comparable performance.

Figure 5: Performance on tasks from the OpenLLM leaderboard. The results indicate that GEM
outperforms CE, demonstrating a lower alignment tax.

In this task, we observe that for pass@100, weight decay slightly improves the performance of
CE, increasing it from 75.5 to 76.6, while NEFT shows no significant improvement, maintaining a
performance of 75.6. In contrast, GEM achieves a 7-point improvement, reaching a performance of
82.5, which represents a 9.3% relative increase. Furthermore, GEM proves to be highly efficient in
test-time scaling, requiring only about half the sampling budget to achieve comparable performance.

We note that in our experiments, the performance using BON or pass rate serves as an estimate of self-
improvement. Specifically, high-quality self-generated samples produced by GEM can be distilled
back into the model, enhancing its zero-shot performance (see (Sessa et al., 2024)). Therefore, we
believe GEM can exhibit a more effective scaling in post-training, a topic we plan to explore in future
work. We also note that in the above evaluation, GEM enhances output diversity without sacrificing
its direct generation performance: in chat, CE (24.5) vs. GEM (24.9), and in code generation, CE
(32.7) vs. GEM (32.6). This contrasts with other techniques, which often increase diversity at the
cost of performance degradation; see Appendix D for further discussion.

6.2 MITIGATING FORGETTING AND REDUCING ALIGNMENT TAX

Figure 6: Staying close to the pre-
trained model helps mitigate forgetting.

In this section, we show that GEM also helps mitigate
forgetting and reduce alignment tax. We evaluate the mod-
els across six tasks: ARC, GSM8K, HellaSwag, MMLU,
TruthfulQA, and WinoGrande, as listed on the OpenLLM
leaderboard. Results are presented in Figure 5.

We observe that after SFT, performance declines on most
tasks for the baseline models, with CE showing the most sig-
nificant drops. However, GEM exhibits different behavior:
for tasks such as ARC and HellaSwag, performance does
not decrease. On average across six tasks, GEM shows an
80% reduction in alignment tax, with a 0.3-point drop for
GEM compared to a 1.5-point drop for CE. This behavior
aligns with our method, which introduces q to encourage
sparse updates of tokens and prevent forgetting. Further
validation can be seen by examining the distance from the pre-trained model. Specifically, we measure

9

GEM-tuned model shows less overfi}ng to the data

NeurIPS 2024 FITML Workshop Best Paper Runner-upICLR 2025

Paper Code

Part IV: Efficient and Scalable
Reinforcement Learning in LLMs

43

RL Task: Alignment

Only PPO Achieves a Win Rate Above 50%
[Ouyang, Long, et al. "Training language models to follow instruc5ons with
human feedback." NeurIPS 2022.]

RLHF Enhances Acc. by More Than 10%
[Achiam, Josh, et al. "Gpt-4 technical report." arXiv preprint
arXiv:2303.08774 (2023).]

44

RL Task: Elici5ng Reasoning

Huge Improvement in Challenging Tasks

o1 can exceeds GPT-4o by 40+ points on
MATH, code, and PhD-Level QA

RL training enables models to
think deep

Test-5me Scaling

[h`ps://openai.com/index/learning-to-reason-with-llms/]

https://openai.com/index/learning-to-reason-with-llms/

45

How does RL work in LLMs?

Collect preference data

Train a reward model

Op5mize LLM against reward model

Alignment

Collect data with answers

Design a rule-based reward func5on

Op5mize LLM against reward model

Reasoning

PPO is the default RL algorithm

46

Introduc5on to PPO

max
θ

𝔼y1:T∼πθ(⋅|x)[r(x, y1:T)]Objec5ve:

Language Model Reward Model

Response

Reward
Value Model

Gradient

PPO

[Schulman, John, et al. "Proximal policy op5miza5on algorithms." arXiv preprint arXiv:1707.06347 (2017).]

47

PPO is Computa5onally Inefficient

PPO’s training is slow

PPOSFT RM

LLM
LLM Opt. State

LLM Ac5va5on

SFT

LLM
LLM Opt. State

LLM Ac5va5on
Value Model

Value Opt. State

Value Ac5va5on

PPO

PPO’s training takes more memory

Value model is the bo`leneck of PPO

48

Can We Improve PPO?

Can we achieve RL training without the value model?

If Yes, we can save memory and accelerate training🚀

REINFORCE is an RL algorithm without value model💡
[Williams, Ronald J. "Simple sta5s5cal gradient-following algorithms for connec5onist reinforcement
learning." Machine learning 8 (1992): 229-256.]

49

Introduc5on to REINFORCE

Language Model Reward Model

Response

Reward

Gradient

REINFORCE

max
θ

𝔼y1:T∼πθ(⋅|x)[r(x, y1:T)]Objec5ve:

gradient = 𝔼y1:T∼πθ(⋅|x)[r(x, y1:T) ⋅ ∇θlog πθ(y1:T |x)]REINFORCE:

No Value Model Stochas5c Gradient Es5ma5on in Prac5ce

[Williams, R. J. Reinforcement-learning connec5onist systems. College of Computer Science, Northeastern University, 1987.]

50

However, REINFORCE does not Work

ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models

policy ⇡✓ to generate responses, but the randomness of
agents is not counted in the environment.

• Property 3: trajectory-level reward. As shown in
Eq. (3), r(st, at) is non-zero only when the whole tra-
jectory ends at t = T . This means that RLHF tasks are
close to “single-stage” optimization problems since the
rewards of the intermediate stages are 0. As such, the
value function and the associated TD learning used in
PPO may not be as useful here.

Based on the above observations, we claim that the expected
long-term return in RLHF can be obtained both computation
efficiently and sample efficiently without the value model.
Consequently, the value model designed in PPO does not fit
the RLHF problem. With this understanding, we propose a
new algorithm tailored for RLHF tasks in the next section.

4. Proposed Method
4.1. A Brief Review on REINFORCE
Before we introduce our proposed method, let us first re-
view the classical algorithm REINFORCE (Williams, 1987;
1992), which can exploit the properties of RLHF tasks to
solve the problem defined in Eq. (1). Consider a fixed
prompt x, REINFORCE uses the (policy) gradient:

r✓Ea1:T⇠⇡✓ [r(x, a1:T)]

=

X

a1:T

r✓

⇥ TY

t=1

⇡✓(at|x, a1:t�1)
⇤
r(x, a1:T)

= Ea1:T⇠⇡✓

⇥ TX

t=1

r✓ log ⇡✓(at|x, a1:t�1)r(x, a1:T)
⇤
.

The last equation employs the so-called log-derivative trick.
The main punchline of the above derivation is the exchange
of the order of the expectation and gradient operators. In
this way, we can easily get a stochastic gradient estimator.
Specifically, let us define the score function:

s✓(x, a1:t) = r✓ log ⇡✓(at|x, a1:t�1). (6)

Now, given a set of N prompts (x1, . . . , xN
), the stochastic

(policy) gradient estimator can be derived as:

bg(✓) = 1

N

NX

i=1

TX

t=1

s✓(x
i, ai1:t)r(x

i, ai1:T), (7)

where ait ⇠ ⇡✓(·|xi, ai1:t�1) for all t = 1, . . . , T .

To optimize its performance, a single step of gradient as-
cent can be executed as: ✓k+1 ✓k + ⌘kbg(✓k), where ⌘k
denotes the learning rate at the k-th iteration. In fact, this
corresponds to reward-weighted likelihood maximization
with samples generated from the rollouts. It differs from
supervised learning, where the optimal responses are known
a priori and the sample distribution is fixed.

REINFORCE appears well-suited for RLHF as it efficiently
estimates the gradient with a single query of the language
and reward model. Furthermore, it does not require train-
ing a value model, thus making it computationally efficient.
Nevertheless, REINFORCE does not address all the draw-
backs of PPO in RLHF. In particular, we find it suffers from
a large variance in its stochastic gradients. Please see Fig-
ure 4 below3; more evidence is provided in Appendix F.1.

(a) Gradient norm of fine-tuning an OPT-1.3B model.

(b) Evaluation reward of fine-tuning an OPT-1.3B model.

Figure 4. Unlike ReMax, REINFORCE suffers the large variance
of stochastic gradients and poor performance.

Why does REINFORCE exhibit a large variance? It
is well-documented that the REINFORCE algorithm suf-
fers from a large variance in stochastic gradients (Sutton
& Barto, 2018). In theory, this variance can be attributed
to two main sources: the external randomness inherent in
MDP’s transitions and the internal randomness from the
policy decisions of the language model (i.e., token genera-
tion). The former is often used to criticize REINFORCE in
generic RL tasks. However, in RLHF applications within
LLMs, where transitions are deterministic and the reward
function is given, external randomness is eliminated. Con-
sequently, REINFORCE has demonstrated effectiveness in
small-scale language model applications (Ranzato et al.,
2016; Li et al., 2016). Nevertheless, when scaling up to
large-scale language models, as tested in our paper, the
internal randomness becomes problematic.

3The gradient variance is difficult to compute since storing gra-
dients is memory-intensive. Instead, we choose the proxy of gradi-
ent norm. For a random variable Z, we have E[|Z|]

p
E[Z2] =p

Var[Z] + (E[Z])2. Thus, a smaller gradient variance comes
with a smaller gradient norm.

5

ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models

policy ⇡✓ to generate responses, but the randomness of
agents is not counted in the environment.

• Property 3: trajectory-level reward. As shown in
Eq. (3), r(st, at) is non-zero only when the whole tra-
jectory ends at t = T . This means that RLHF tasks are
close to “single-stage” optimization problems since the
rewards of the intermediate stages are 0. As such, the
value function and the associated TD learning used in
PPO may not be as useful here.

Based on the above observations, we claim that the expected
long-term return in RLHF can be obtained both computation
efficiently and sample efficiently without the value model.
Consequently, the value model designed in PPO does not fit
the RLHF problem. With this understanding, we propose a
new algorithm tailored for RLHF tasks in the next section.

4. Proposed Method
4.1. A Brief Review on REINFORCE
Before we introduce our proposed method, let us first re-
view the classical algorithm REINFORCE (Williams, 1987;
1992), which can exploit the properties of RLHF tasks to
solve the problem defined in Eq. (1). Consider a fixed
prompt x, REINFORCE uses the (policy) gradient:

r✓Ea1:T⇠⇡✓ [r(x, a1:T)]

=

X

a1:T

r✓

⇥ TY

t=1

⇡✓(at|x, a1:t�1)
⇤
r(x, a1:T)

= Ea1:T⇠⇡✓

⇥ TX

t=1

r✓ log ⇡✓(at|x, a1:t�1)r(x, a1:T)
⇤
.

The last equation employs the so-called log-derivative trick.
The main punchline of the above derivation is the exchange
of the order of the expectation and gradient operators. In
this way, we can easily get a stochastic gradient estimator.
Specifically, let us define the score function:

s✓(x, a1:t) = r✓ log ⇡✓(at|x, a1:t�1). (6)

Now, given a set of N prompts (x1, . . . , xN
), the stochastic

(policy) gradient estimator can be derived as:

bg(✓) = 1

N

NX

i=1

TX

t=1

s✓(x
i, ai1:t)r(x

i, ai1:T), (7)

where ait ⇠ ⇡✓(·|xi, ai1:t�1) for all t = 1, . . . , T .

To optimize its performance, a single step of gradient as-
cent can be executed as: ✓k+1 ✓k + ⌘kbg(✓k), where ⌘k
denotes the learning rate at the k-th iteration. In fact, this
corresponds to reward-weighted likelihood maximization
with samples generated from the rollouts. It differs from
supervised learning, where the optimal responses are known
a priori and the sample distribution is fixed.

REINFORCE appears well-suited for RLHF as it efficiently
estimates the gradient with a single query of the language
and reward model. Furthermore, it does not require train-
ing a value model, thus making it computationally efficient.
Nevertheless, REINFORCE does not address all the draw-
backs of PPO in RLHF. In particular, we find it suffers from
a large variance in its stochastic gradients. Please see Fig-
ure 4 below3; more evidence is provided in Appendix F.1.

(a) Gradient norm of fine-tuning an OPT-1.3B model.

(b) Evaluation reward of fine-tuning an OPT-1.3B model.

Figure 4. Unlike ReMax, REINFORCE suffers the large variance
of stochastic gradients and poor performance.

Why does REINFORCE exhibit a large variance? It
is well-documented that the REINFORCE algorithm suf-
fers from a large variance in stochastic gradients (Sutton
& Barto, 2018). In theory, this variance can be attributed
to two main sources: the external randomness inherent in
MDP’s transitions and the internal randomness from the
policy decisions of the language model (i.e., token genera-
tion). The former is often used to criticize REINFORCE in
generic RL tasks. However, in RLHF applications within
LLMs, where transitions are deterministic and the reward
function is given, external randomness is eliminated. Con-
sequently, REINFORCE has demonstrated effectiveness in
small-scale language model applications (Ranzato et al.,
2016; Li et al., 2016). Nevertheless, when scaling up to
large-scale language models, as tested in our paper, the
internal randomness becomes problematic.

3The gradient variance is difficult to compute since storing gra-
dients is memory-intensive. Instead, we choose the proxy of gradi-
ent norm. For a random variable Z, we have E[|Z|]

p
E[Z2] =p

Var[Z] + (E[Z])2. Thus, a smaller gradient variance comes
with a smaller gradient norm.

5

REINFORCE’s gradient has a high variance REINFORCE’s reward does not increase

51

Why is Variance so High?

gradient = 𝔼a1:T∼πθ(⋅|x)[r(x, a1:T) ⋅ ∇θlog πθ(a1:T |x)]

Sample space is large

Size: (vocabulary size)sequence length

Llama-3: (128k)8k

Rewards vary across samples

Reward range of open-ended
ques5on-answers: [-14, 7]

REINFORCE is oUen cri5cized for a high gradient variance. But why?

[Su`on, Richard S., and Andrew G. Barto. Reinforcement learning: An introduc:on. MIT press, 1998.]

52

Introduc5on to ReMax

Remark: 1) Subtrac5ng a RV by a constant does not change the variance
 2) ReMax introduces a RV → control variateb ⋅ ∇θlog πθ(y1:T |x)

Key Idea: Introduce a baseline value for accurate gradient es5ma5on

Advantage

Greedy Decoding

53

Why Greedy Decoding?

Reason 2: value of greedy decoding ensures independence between the
baseline and original RVs → stable es.ma.on

Reason 3: if there is a response be`er than the greedy one, improve it’s
likelihood

Reason 1: greedy decoding corresponds to mode of the distribu5on →
effec.ve es.ma.on

54

ReMax Algorithm

ReMax is Simple
8 Lines of code to implement (PPO: 50+)

1 Hyper-parameter (lr) to tune (PPO: 5+)

Newly added

55

Comparing with Google’s Method

Large reward model

Real users’ prompts

Training without
value model

ReMax’s training strategies are also used in Google’s Gemma 2

56

Can We Safely Remove Value Model?

RL in LLMs

General RL Tasks

We conjecture that value-free methods are “op5mal” for RL in LLMs

57

PPO = REINFORCE with Baseline

2 LLM and Its RL Formulation

2.1 Background on LLMs

Auto-regressive Formulation.
Next-token-prediction.
Multi-task Learner.
Few-shot Learner.

2.2 Background on RL

MDP Formulation.

2.2.1 Imitation Learning.

2.3 Formulations

SFT. [Swamy et al., 2025]
RLHF.
Reasoning. [Team et al., 2025]

2.4 Discussion: Specical Properties of LLMs for RL

No external uncertainty
Call for memory-e�cient algorithms
Call for tuning-easy algorithms

3 RL Algorithms

In this section, we review leading RL algorithms for large language model (LLM) training. We
categorize these algorithms into two classes based on their interaction with the environment: online
RL algorithms that iteratively refine through interaction with the environment, and o✏ine RL
algorithms that learn from a fixed dataset.

3.1 Online-RL Algorithms

The success of RLHF builds on the Proximal Policy Optimization (PPO) algorithm [Schulman et al.,
2017]. PPO is a mature optimization algorithm extensively validated in deep reinforcement learning
for tasks including video games and robotics control.

Specifically, PPO optimizes the surrogate function (the first-order approximation to the reward
maximization objective):

Lppo = Ex⇠⇢Ea1:T⇠⇡✓old

"
TX

t=1

eA(st, at)min
�
 (st, at), clip

�
 (st, at), 1� �, 1 + �

�
#
.

Here, trajectories are sampled from a fixed old policy ⇡✓old within one iteration, with importance
sampling used to reduce bias, as shown in the ratio (st, at) , ⇡✓(at|st)/⇡✓old(at|st). A clipping
hyper-parameter � > 0 helps stabilize training. The advantage function A(st, at), key for policy

4

gradient estimation, is calculated using Generalized Advantage Estimation (GAE) [Schulman et al.,
2016]:

A(st, at) =
T�tX

j=0

�jadvantaget+j =
TX

j=0

�j [r(st+j , at+j) + �V (st+1+j)� V (st+j)],

where � 2 [0, 1] and � 2 [0, 1] are two hyper-parameters: � controls the discount of future rewards
while � controls the discount of future advantages. The value model V (s) is trained with a Temporal
Di↵erence (TD) learning objective [Sutton, 1988] to estimate long-term returns from any state s.

PPO operates iteratively by: first collecting trajectories using the current policy, then estimating
advantages using the value function, updating the policy using the clipped surrogate objective, and
simultaneously updating the value function to better estimate returns. This process repeats until
convergence, demonstrating the online nature of PPO.

We observe that the best practices for applying PPO to LLMs typically involve setting ⇡✓old = ⇡✓
and �,� = 1 [Yao et al., 2023, Ahmadian et al., 2024]. Under these conditions, PPO e↵ectively
reduces to the REINFORCE estimator with a baseline value of V (st) (a point we will formally
elaborate on later) [Li et al., 2024]:

Lppo(✓) = Ex⇠⇢Ea1:T⇠⇡✓

"
TX

t=1

r(x, a1:T)� V (x, a1:t)

#
.

This simplification suggests that, in the context of LLMs, the primary role of the value network in
PPO is to provide a baseline value for gradient estimation, with GAE playing no significant role.

We note that while PPO is e↵ective for LLMs, it introduces two models for training: the policy
model (the language model that generates text tokens) and the value model (which takes text tokens
as inputs and outputs a scalar estimation of the return). This value model becomes the bottleneck
for scaling RL, as it doubles the computation memory and training time. This raises an important
question: Is the value model necessary for RL training in LLMs?

From PPO to REINFORCE Li et al. [2024] aruged that PPO is overshot for LLMs. They
presented key insights that PPO is designed for general RL tasks that rely on a value network.
Specifically, general RL tasks have stochastic transitions with uncertainty beyond the agent’s control,
which introduces noisy estimation of returns. To address this challenge, the RL community realized
that a value network is needed to memorize past data and provide more accurate return estimates.
However, Li et al. [2024] pointed out that this rationale doesn’t apply to LLMs, as transitions in
LLMs are deterministic. Thus, there’s no fundamental need for a value model. Furthermore, from a
computational perspective, removing the value model is advantageous. But would removing the
value model hurt performance, as deep RL research suggests? Li et al. (2024) demonstrated that
one can possibly remove the value network while achieving comparable performance to PPO.

[Li et al., 2024] found that in RL history, there exists a class of algorithms called REINFORCE
that can maximize rewards without introducing a value network. However, REINFORCE is unstable
in its naive version, as demonstrated by the variance and training divergence issues illustrated in Li
et al. (2024).

Li et al. [2024] found that in the RL history, there is a class of algorithms called REINFORCE,
that can also maximize the reward without introducation of the value network.

Yet there’s no need to abandon REINFORCE entirely. One simple way to address the variance
issue is to follow the REINFORCE with Baseline framework [Dayan, 1991]:

LREINFORCE-with-baseline(✓) = ExEa1:T⇠⇡✓
[r(x, a1:T)� b(x)] (1)

5

General PPO

gradient estimation, is calculated using Generalized Advantage Estimation (GAE) [Schulman et al.,
2016]:

A(st, at) =
T�tX

j=0

�jadvantaget+j =
TX

j=0

�j [r(st+j , at+j) + �V (st+1+j)� V (st+j)],

where � 2 [0, 1] and � 2 [0, 1] are two hyper-parameters: � controls the discount of future rewards
while � controls the discount of future advantages. The value model V (s) is trained with a Temporal
Di↵erence (TD) learning objective [Sutton, 1988] to estimate long-term returns from any state s.

PPO operates iteratively by: first collecting trajectories using the current policy, then estimating
advantages using the value function, updating the policy using the clipped surrogate objective, and
simultaneously updating the value function to better estimate returns. This process repeats until
convergence, demonstrating the online nature of PPO.

We observe that the best practices for applying PPO to LLMs typically involve setting ⇡✓old = ⇡✓
and �,� = 1 [Yao et al., 2023, Ahmadian et al., 2024]. Under these conditions, PPO e↵ectively
reduces to the REINFORCE estimator with a baseline value of V (st) (a point we will formally
elaborate on later) [Li et al., 2024]:

Lppo(✓) = Ex⇠⇢Ea1:T⇠⇡✓

"
TX

t=1

r(x, a1:T)� V (x, a1:t)

#
.

This simplification suggests that, in the context of LLMs, the primary role of the value network in
PPO is to provide a baseline value for gradient estimation, with GAE playing no significant role.

We note that while PPO is e↵ective for LLMs, it introduces two models for training: the policy
model (the language model that generates text tokens) and the value model (which takes text tokens
as inputs and outputs a scalar estimation of the return). This value model becomes the bottleneck
for scaling RL, as it doubles the computation memory and training time. This raises an important
question: Is the value model necessary for RL training in LLMs?

From PPO to REINFORCE Li et al. [2024] aruged that PPO is overshot for LLMs. They
presented key insights that PPO is designed for general RL tasks that rely on a value network.
Specifically, general RL tasks have stochastic transitions with uncertainty beyond the agent’s control,
which introduces noisy estimation of returns. To address this challenge, the RL community realized
that a value network is needed to memorize past data and provide more accurate return estimates.
However, Li et al. [2024] pointed out that this rationale doesn’t apply to LLMs, as transitions in
LLMs are deterministic. Thus, there’s no fundamental need for a value model. Furthermore, from a
computational perspective, removing the value model is advantageous. But would removing the
value model hurt performance, as deep RL research suggests? Li et al. (2024) demonstrated that
one can possibly remove the value network while achieving comparable performance to PPO.

[Li et al., 2024] found that in RL history, there exists a class of algorithms called REINFORCE
that can maximize rewards without introducing a value network. However, REINFORCE is unstable
in its naive version, as demonstrated by the variance and training divergence issues illustrated in Li
et al. (2024).

Li et al. [2024] found that in the RL history, there is a class of algorithms called REINFORCE,
that can also maximize the reward without introducation of the value network.

Yet there’s no need to abandon REINFORCE entirely. One simple way to address the variance
issue is to follow the REINFORCE with Baseline framework [Dayan, 1991]:

LREINFORCE-with-baseline(✓) = ExEa1:T⇠⇡✓
[r(x, a1:T)� b(x)] (1)

5

PPO in LLM

Outcome reward in
REINFORCE’s es5mator

Model-learned
Baseline

Best Prac5ce γ = 1,λ = 1
[Ahmadian, Arash, et al. "Back to basics: Revisi5ng reinforce style op5miza5on for learning from human feedback in llms." arXiv
preprint arXiv:2402.14740 (2024).]

58

ReMax is Computa5onally Efficient
ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models

GP
U

M
em

or
y

(G
B)

0

75

150

225

300

PPO ReMax

Tr
ai

ni
ng

 T
im

e
 (H

ou
r)

0

0.75

1.5

2.25

3

PPO ReMax

54% 62%

Figure 2. GPU memory consumption and training time by PPO
and ReMax, respectively. These measurements are conducted on a
Llama-2-7B model using A800-80GB GPUs. Further details are
provided in the main text and Appendix E.3.

rewards. The commonly used algorithm for this step is Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017), as
seen in the mentioned research and open-source software
(von Werra et al., 2020; Li et al., 2023a; Yao et al., 2023).
However, PPO brings heavy computational demands due to
its extra value model and related training components for
optimization of the LLM. In practice, training with PPO
could take 4⇥ longer than the first two steps and increases
GPU memory consumption by at least 2⇥ (see e.g., Table 4
and 5 in (Yao et al., 2023)), which makes RLHF cannot be
afforded with limited computation resources.

Motivated by the above observations, this paper focuses on
the third step of RLHF to make it easier and cheaper to
use. We acknowledge that researchers have attempted to
address this issue by employing techniques such as gradient
checkpointing (Sohoni et al., 2019), the Zero Redundancy
Optimizer (ZeRO) (Rajbhandari et al., 2020), the offload
technique (Ren et al., 2021), and a hybrid training engine
(Yao et al., 2023). However, these techniques result in slow
computation. Even with these methods, the heavy GPU
memory consumption of PPO remains a challenge.

1.1. Our Contribution
We revisit the formulation of RLHF and aim to design new
algorithms. We identify three important properties of RLHF
that are quite different from general RL tasks: fast simula-
tion, deterministic transitions, and trajectory-level rewards.
The first property means that a trajectory (i.e., a complete
response of a LLM) can be quickly obtained with minimal
time overhead. The second property indicates that the text
context relies solely on past tokens and the presently gener-
ated token. Finally, the third property implies that the reward
model provides a single value only upon the completion of
a response. Please refer to Figure 3 for illustration. These
three properties are not exploited in PPO, so we believe that
PPO is not the best fit for RLHF in LLMs.

Based on the observations above, we propose a new algo-
rithm tailored for RLHF, named ReMax. ReMax is built
upon the well-known REINFORCE algorithm (Williams,
1987; 1992). The pseudo-code for ReMax is provided in
Algorithm 1 (also see Figure 1). To improve LLMs, Re-

Figure 3. Illustration of StarCraft II (a general RL task example)
and RLHF in LLMs. Compared to general RL tasks, which feature
stochastic transitions, dense rewards, and slow simulations, RLHF
tasks in LLMs exhibit deterministic transitions, trajectory-level
rewards, and fast simulations.

Max uses a stochastic (policy) gradient estimator in Line 7
of Algorithm 1, which amounts to reward-weighted likeli-
hood maximization. This estimator is unbiased, like PPO,
but unlike PPO, it does not rely on a value model. This
is significant because the value model, introduced in PPO
for stable training, doubles the GPU memory consumption1

and increases the training time. To manage training with-
out a value model, we introduce a new variance reduction
technique (refer to Lines 4 and 5 of Algorithm 1).

Algorithm 1 ReMax for Aligning LLMs

1 I n p u t : r eward mode l (rm) , l a n g u a g e m o d e l (lm)
2 f o r prompt in d a t a s e t s :
3 seq =lm . sample (prompt , g r e ed y = F a l s e)
4 seq max=lm . sample (prompt , g r e ed y =True)
5 rew=rm (prompt , seq) −rm (prompt , seq max)
6 lo gp =lm . i n f e r e n c e (prompt , seq)
7 l o s s = −(l ogp . sum (dim = −1)* rew) . mean ()
8 lm . min imize (l o s s)
9 Outpu t : l a n g u a g e m o d e l

We highlight the advantages of ReMax over PPO below:

• Simplicity: ReMax is simpler to implement than PPO,
requiring only 6 lines of main code compared with PPO’s
30+. In addition, it eliminates 4 hyper-parameters in
PPO (e.g., importance sampling clipping, GAE coeffi-
cient, value model learning rate, and off-policy training
epochs), which are laborious to tune (Engstrom et al.,
2020; Zheng et al., 2023c). This is crucial, as hyper-
parameter tuning is expensive for LLMs.

• Memory Efficiency: ReMax can significantly reduce
GPU memory usage, which allows RLHF training with

1For fine-tuning a LLM with 7B parameters, the reward model
consumes 4% of the GPU memory, whereas the value model and
its associated training components (e.g., activations, gradients, and
optimizer states) use 46% of the GPU memory.

2

ReMax saves about 2x GPU memory and training 5me on Llama-2-7B

[Li, Ziniu, et al. "Remax: A simple, effec5ve, and efficient reinforcement learning method for aligning large language
models." arXiv preprint arXiv:2310.10505 (2023).]

59

Performance in RLHF Task

ReMax is superior to DPO and PPO

[Li, Ziniu, et al. "Remax: A simple, effec5ve, and efficient reinforcement learning method for aligning large language
models." arXiv preprint arXiv:2310.10505 (2023).]

60

Performance in RLHF Task

ReMax achieves SOTA among 7B models (measured at Jan., 2024)

[Li, Ziniu, et al. "Remax: A simple, effec5ve, and efficient reinforcement learning method for aligning large language
models." arXiv preprint arXiv:2310.10505 (2023).]

61

Performance in Reasoning Task

ReMax is superior to DeepSeek’s GRPO

Mineva
Math

Olmpiad
Bench

HumanEva
l

LeetCod
e

LiveCode
Bench

Avg.

ReMax 24.6 17.3 61.0 21.1 18.6 28.5

GRPO 22.4 20.3 57.3 13.3 18.7 26.4

[h`ps://curvy-check-498.no5on.site/Process-Reinforcement-through-Implicit-
Rewards-15f4fcb9c42180f1b498cc9b2eaf896f]

Others’
Evalua5on

Our
Evalua5on GRPO

ReMax

https://curvy-check-498.notion.site/Process-Reinforcement-through-Implicit-Rewards-15f4fcb9c42180f1b498cc9b2eaf896f
https://curvy-check-498.notion.site/Process-Reinforcement-through-Implicit-Rewards-15f4fcb9c42180f1b498cc9b2eaf896f
https://curvy-check-498.notion.site/Process-Reinforcement-through-Implicit-Rewards-15f4fcb9c42180f1b498cc9b2eaf896f

62

Overview of ReMax’s Theory

Theory

Convergence Stability

Local Convergence Global Convergence Variance Reduc5on Accelera5on

Proved Conjecture to be True Proved Not Start Yet

63

Variance Reduc5on

Implica5on:
1) variance reduc5on when the op5mal ac5on is not dominated
2) slow convergence when the policy is near-op5mal
 → good if reward is imperfect (mi.ga.ng overfi@ng)

Se}ng: 2-ac5on armed bandit (assuming)r(a1) > r(a2)

Our result: ifVariance(ReMax) < Variance(REINFORCE)

π(a1) ≤ 0.5 + 0.5
r(a1)

r(a1) − r(a2)

Paper Code

ICML 2024

65

Conclusive Remark

Part I: LLM Training Pipeline

‣ Pre-training: knowledge acquisi5on
‣ Post-training: instruc5on following and ability enhancement

Part II: Preserving Diversity in SFT

‣ CE’s formula5on lack of considera5on of diversity
‣ GEM: a game-theore5c approach with entropy regulariza5on

Part III: Efficient RL Training

‣ PPO’s formula5on are overshot for LLM
‣ ReMax: variance-reduced REINFORCE

Thank You!

