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Overview of This Talk

Evolution of Large Language Models

Key Differences Between LLMs and Traditional Deep Learning

Our Research Contributions

Key Scientific Insights



Why do we study this topic?

Tian Xu 
(NJU)

Jiancong Xiao  
(Upen)

Zhi-Quan Luo 
(CUHKSZ)

Ruoyu Sun 
(CUHKSZ)

Congliang Chen 
(CUHKSZ)

Zeyu Qin 
(HKUST)

Ziniu Li 
(CUHKSZ)

How do we design our approach?

Is it practically impactful? Are there new scientific discoveries?

This Talk

NeurIPS 2024 FITML Workshop Best Paper Runner-upICLR 2025



Part I: Overview of LLMs
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LLMs and Transformers

“LLMs”

“are” Transformers

Token  
Embedding

Next-token  
embedding

Token 
probabilities

Input Prediction

softmax
“are”

Transformers perform next-token-prediction 

“cool”

“cool” “<eos>”

Model
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LLM Pre-training

“Textbook” teaches everything 
(multi-task learning)

Next-token Prediction is enough for AGI

[https://www.youtube.com/watch?v=YEUclZdj_Sc]

Ilya Sutskever 
(Godfather of ChatGPT)

LLM Pre-training  = Transformers + Next-token-Prediction + Textbook Data

world knowledge
common sense
math

linguistics 

reasoning

“Textbooks” can cover:
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Scaling Law

L =
A

Dα
+

B
Nβ

+ L0

L: Loss 
D: dataset size 
N: number of parameters 
A, B: constants; : irreducible lossL0

model size

0

4500

9000

13500

18000

GPT-3 Llama-2 Llama-3 Qwen2.5
(2020) (2023) (2024) (2024)

300B
1.5T

15T
18T

dataset size

[Kaplan, Jared, et al. "Scaling laws for neural language models." arXiv:2001.08361.]
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Pre-training is not Enough Yet

Pre-training

Knowledge Acquisition

Prompt     : Explain the pre-training of LLMs. 

Llama2-7B: Explain the pre-training of LLMs.  
                     Explain the pre-training of LLMs.   
                     The LLMs are pre-trained on a large        
amount of unlabeled data, […]

Prompt               : Explain the pre-training of LLMs. 

Llama2-7B-Chat: Large language models (LLMs) are 
trained on a variety of  tasks and datasets before they 
are fine-tuned for  specific natural language processing 
(NLP) tasks. Here's an  overview of some common pre-
training tasks and their goals: […]

repetitive response    well-organized response

📚
Post-training

Ability Reinforcement 🔨

Pre-trained LLMs: Knowledge 
Learner without Task Context

Post-trained LLMs: Enhanced 
Multi-task Solver
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Post-training is Powerful

Post-training enhances performance for down-stream tasks 
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What’s Next?

2020  
(era of GPT-3)

2024 
(era of OpenAI o1)

LLMs are few-shot learners LLMs are strong reasoners 

[Talk at NeurIPS 2024]

Pre-training as we know it will end

What comes next? The long term is about agentic, 
reasons, undersatnds, is self aware

“fine-tuning with few 
examples is enough”

“post-training is equally 
important as pre-training”



Part II: Motivation
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LLM Post-Training

Ability Enhancement

Supervised Fine-Tuning 
(SFT)

Reinforcement  Learning  
(RL)

Post Training

Instruction LearningGoal:

Approach:

Teacher LLM

Label

Teacher LLM

Reward

Action / Response
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Supervised Fine-tuning

Teacher

Label

Q: Can Geoffrey Hinton have a conversation 
with George Washington？

A: The answer is No because Geoffrey 
Hinton was born in 1947, while […]

Prompt

Label

SFT Data Example

LLMs learn to understand the 
question (task) and provide 
relevant answers

max
θ

𝔼y∼p(⋅|x)[log fθ(y |x)]Objective

LLM
: promptx : response/completion (label)y

: distribution of LLMfθ

: data distribution (from teacher)p
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Reinforcement Learning

Teacher

Reward

Response

LLM

max
θ

𝔼y∼fθ(⋅|x)[r(x, y)]Objective

Generation VerificationFramework

Q: How many ‘r’ in strawberry? 

A: There is one ‘r’ in ‘stra’ and another ‘r’ 
in ‘berry’, so the answer is 2

Prompt

RL Data Example

LLM 
Response

Teacher 
Feedback

Reward = -1

LLMs learn to correct mistakes 
and enhance confidence in 
answering questions
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Output Diversity
Question: Marissa is hiking a 12-mile trail. She took 1 hour to walk the first 4 miles, then another 
hour to walk the next two miles. If she wants her average speed to be 4 miles per hour, what speed 
(in miles per hour) does she need to walk the remaining distance?
Answer: 6

Greater Diversity Leads to Exploration of Better Solutions

(reward = -1)

(reward = +1)
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SFT Reduces Model Output Diversity

Prompt Give me a single-digit number

Pre-trained LLM Pre-trained LLM + SFT

Response 
Distribution

“near uniform” “biased toward 7” 

 #1

Output Diversity

0 20 40 60 80

Pre-training SFTOutput 
Diversity 
Statistics

 #2 SFT reduces diversity by ~20%



17

Revisiting SFT

Response Space

Well formattedPractice of SFT

😞

SFT aims to align pre-trained model outputs to RL/human-preferred format   
(outputs that are easy to read, interpret, and verify)

(No diversity reduction)

Lose of diversity

Pre-trained LLM Poorly Formatted

Goal of SFT Well formatted😊
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Why does Diversity Fate in SFT?

Elements of SFT

Data

Model

Algorithm

Pre-trained with rich knowledge encoded

Limited Size and Coverage
(10B-100B in SFT v.s.  1T-10T in pre-training)

Minimizing cross-entropy (CE) loss

Comment

nothing to blame

not perfect but 
cannot blame

is this good?
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CE seems Effective for …

Langauge Model “Coffee”“Tea”

Cross-Entropy Loss

Back-propagation Is CE Effective for Generation?

“I like to drink”

Convolution Neural Network

Input Model Label

“Cat”“Dog”

Prediction

Cross-Entropy Loss
Back-propagation 

CE is Effective for Classification💡
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Understanding Generation Tasks

Classification Generation

𝒳 ↦ 𝒴
(function: many-to-one)

𝒳 ↦ Δ(𝒴)
(distribution: one-to-many)

Target

Remark for LLMs: 
‣  responses are not unique  

   (variation in formats, styles, or reasoning paths) 
‣ (SFT) data is hard to cover all cases

Illustration
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Theory of CE

min
θ

− ∑
(xi,yi)∼D

y⊤
i log fθ(yi |xi)

CE Loss (Empirical)

: input-label pair 
: the conditional prediction distribution 

: parameters of neural network

(xi, yi)
fθ(y |x)
θ

CE Loss (Population)

max
θ

𝔼x∼ρ𝔼y∼p(⋅|x) log fθ(y |x)

: prompt distribution 
: the conditional data distribution to learn

ρ
p( ⋅ |x)

Forward KL Divergence

min
θ

𝔼x∼ρ KL(p( ⋅ |x), fθ( ⋅ |x)) + constant

Equivalence 

Distribution Matching

CE can be used to learn a distribution

If the data samples are “abundant”

Classification  
(one label sample 
is enough)

SFT  
(data is limited)

Pre-training    
(huge data)

✅ ✅ ❎
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Summary

Challenge: 
We need to protect LLM’s output diversity during SFT

Understanding: 
CE easily fits to the empirical data and loses the diversity

Goal: 
Designing new formulation and algorithm for SFT



Part III: Our Approach GEM
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A Naive Approach for Diversity

Proposition 2. For the Nash equilibrium point of the Game is also the optimal solution to:

max
f

J (f) = ExEy⇠f(|x)[log p(y|x)� log f(y|x)]
| {z }

�DKL(f(·|x),p(y|x))

+(� � 1)ExEy⇠f(·|x)[� log f(y|x)]
| {z }

H(f(·|x))

and

f?
= argmax

f
J (f)

Remark 1. Reverse KL problem is hard to

Forward-KL-based:

max
f

ExEy⇠p(·|x)[log f(y|x)]| {z }
�DKL(p,f)+constant

+� ExEy⇠f(·|x)[� log f(y|x)]
| {z }

H(f)

Reverse-KL-based:

6 Proof

Proof of Lemma 1.

References

Peter D Grünwald and A Philip Dawid. Game theory, maximum entropy, minimum discrepancy

and robust bayesian decision theory. 2004.

4

CE + Entropy Regularization

Toy setting LLMs

Entropy regularizer encourages diversity via increasing the tail of distribution
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Analyzing Cross-Entropy Loss

Setting:   and  y ∼ fθ( ⋅ |x) fθ(i |x) =
exp(θi)

∑K
j=1 exp(θj)

Gradient of CE:  assuming -th token is the labeli

Implication:

Target token (label)’s logit  while other tokens’ logits ↑ ↓
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Distribution Matching as Flow Transfer

Published as a conference paper at ICLR 2025

Supervised Fine-Tuning and the Cross-Entropy Method. To specialize in downstream tasks, LLM
relies on SFT after pre-training. This process involves using a supervised dataset with high-quality
prompt-response pairs (x, y), sampled from the prompt distribution ⇢ and conditional data distribution
p(y|x). The Cross Entropy (CE) loss is the de facto training objective for SFT, designed to maximize
the likelihood of the training data. Formally, this is expressed as:

min
✓

LCE(✓) = �Ex⇠⇢Ey⇠p(·|x)[log f✓(y|x)].

Here, the prompt distribution ⇢ is typically not modeled during SFT and can be treated as a constant;
for simplicity, we omit it when the context is clear. A key feature of this approach is that it exclusively
maximizes the likelihood of the observed data, disregarding alternative plausible responses.

3 CHALLENGES AND PRINCIPLES FOR SFT

Before exploring technical solutions, we establish guiding principles for SFT within the broader
context of LLM development. Importantly, SFT is rarely the final stage of LLM development;
subsequent phases such as preference learning (Rafailov et al., 2023; Azar et al., 2024; Wang et al.,
2024b), reinforcement learning (Li et al., 2024c; Shao et al., 2024), and advanced inference-time
strategies (Snell et al., 2024) heavily depend on output diversity to explore and identify high-quality
solutions. This reliance on diversity underscores a key challenge: while pre-trained LLMs inherently
produce diverse outputs due to their broad knowledge bases, standard SFT practices—particularly
the use of CE loss—often reduces this diversity (O’Mahony et al., 2024; Wang et al., 2024a). Such
reduction can lead to knowledge forgetting, aligning with the “alignment tax” phenomenon observed
in (Bai et al., 2022; Ouyang et al., 2022).

We argue that preserving output diversity during SFT can address these issues. Intuitively, the ability
of a model to generate diverse responses serves as an indicator of the richness of its retained knowledge.
By maintaining diversity, the model is compelled to consider alternative plausible responses, which in
turn necessitates that its internal parameters encode and retain relevant knowledge. To operationalize
this insight, we propose the following guiding principle for SFT:

Learn from the data while preserving diversity.
In the following sections, we present technical insights and solutions aimed at achieving this principle.

4 PROBABILITY TRANSFER THEORY

In this section, we draw insights into algorithm design by examining the dynamics of CE. We will
introduce a new theory of probability transfer. To illustrate this concept, we consider a simplified
setting, where the prompt x 2 X is fixed and given. We model the conditional distribution f✓(y|x) =
softmax(✓x) with ✓x 2 RK being the “logit” and K being the vocabulary size. Let y = i 2 [K]
denote the token class to be learned.

Revisiting CE. We begin by calculating the gradient of the CE loss for the given example:
�r✓LCE(✓) = [�f✓(1|x),�f✓(2|x), . . . , 1� f✓(i|x), . . . ,�f✓(K|x)]. (1)

This indicates that, except for the label class i, whose logit increases by 1� f✓(i|x), all other tokens
experience a logit decrease proportional to their probabilities.

What makes this behavior particularly interesting? We interpret it through a logit flow dynamics
perspective, where logits are redistributed among token classes during training. Let i-th token class
being the “target”, while other tokens being the “sources”. We have the following observation.
Proposition 1. The gradient of CE specifies a logit flow map: each source token j transfers f✓(j|x)
logits to the target token i. Formally,

�r✓LCE(✓) =
KX

j=1,j 6=i

wi j · ei j (2)

wi j = f✓(j|x)

ei j = [0 · · · 1|{z}
i-th position

· · · �1|{z}
j-th position

· · · 0]

3Example: fθ = [0.1,0.3,0.6] Label: #2

Gradient: g = [−0.1,0.7, − 0.6]
g = 0.1 * [−1 1 0] + 0.6 * [0 1 −1]Flow perspective:

Logits flow from source tokens = Logits flow to target token
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Limitations of CE

Limitation 2: All-to-one Update

Limitation 1: Unbounded Transfer

Published as a conference paper at ICLR 2025

ensuring that logits redistributed from source tokens equal those received by the target token:

Logits from source tokens =
KX

j=1,j 6=i

f✓(j|x)

= 1� f✓(i|x) = Logits to the target token.

Building on the above understanding, we will highlight the limitations of CE and introduce our
proposed techniques.

7

How to Design Auxiliary Variable? 

4321 4321 43214321

CE GEM

all-to-one update sparse update

unbounded transfer adap]ve termina]on

distribu]on collapse diversity-keeping

Figure 1: Comparison of learning schemes: CE v.s. GEM (� = 0). The arrows illustrate the
probability movement directions during the learning process, with Token 3 as the target token.

Limitation 1 of CE: All-to-One Probability Transfer. CE loss implements a logit flow mechanism
where probability mass from all non-target tokens is transferred to the target token. This approach
penalizes all non-target tokens regardless of their semantic relevance or contextual appropriateness.
For example, in the sentence “I like coffee”, while “coffee” is the target, reducing the logit and proba-
bility of “tea”—a semantically related and contextually plausible token—may harm generalization.
This limitation is especially critical in LLMs, as they are extensively pre-trained and encode rich
knowledge across many tokens. The all-to-one flow dynamic disrupts these carefully learned token
relationships, potentially reducing output diversity and contributing to knowledge forgetting.

Proposed Technique 1: Sparse Update. To address this limitation, we propose a sparse update
strategy. Instead of considering all source tokens, we select only pivotal tokens for probability transfer.
For illustration, we introduce a simple approach: we identify the pivotal token as the one with the
highest model confidence: j 2 argmax f(·|x). The underlying intuition is clear: the model only
corrects its most confident prediction if it is incorrect (i.e., does not match the target label).

However, this technique alone is insufficient in the asymptotic case. As training progresses and
the pivotal token’s probability diminishes through repeated updates, the flow mechanism naturally
shifts to other high-probability tokens. This cascading effect eventually approaches the dense update
behavior of CE as probabilities of all source tokens are sequentially reduced. This observation
highlights the need for a principled approach to terminate probability transfer at an appropriate stage.

Limitation 2 of CE: Unbounded Probability Transfer. The CE optimization process lacks a
natural termination point for probability transfer. The logit flow continues indefinitely until all source
token probabilities approach zero, causing the distribution to collapse and concentrate entirely on the
target token. This represents an undesirable convergence point that eliminates distribution diversity.
Fundamentally, this issue stems from CE’s implicit assumption that observed data should be assigned
maximum likelihood, without preserving reasonable probability for alternative tokens.

Proposed Technique 2: Adaptive Termination.To prevent distribution collapse, we introduce an
intuitive stopping criterion: halt the probability transfer once the target token i becomes the most
probable token in the distribution. Formally, if i 2 argmax f(·|x), we stop further update. This
supports the assumption that while the observed data should be adjusted to increase its likelihood,
other possibilities should still be considered, so the probability of the observed data should not be
forced to 1. Our stopping rule is designed to ensure that, after learning, greedy decoding can output
the correct label. An additional advantage of this rule is that, due to early termination, it keeps the
resultant distribution close to its initial state, thereby mitigating forgetting.

The two techniques outlined above form the foundation for the initial prototype design of our proposed
algorithm, GEM (Game-theoretic Entropy Maximization). The meaning and rationale behind the
name will be explained in detail in Section 5. For reference, we outline its procedure below and
provide a visual illustration in Figure 1.

4

Procedure of CE

#1

#2
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Proposed Solutions
Published as a conference paper at ICLR 2025

While the target token i /2 argmax f✓k(·|x), continue the following steps.
• Calculate the model’s best prediction j = argmax f(·|x)

• Decrease the logit for source token j by learning rate ⌘ and weight wi j :
✓k+1[j] = ✓k[j]� ⌘ ⇤ wi j

• Increase the logit for the target token i in a similar manner:
✓k+1[i] = ✓k[i] + ⌘ ⇤ wi j

While this prototype is conceptually sound and aligns with the guiding principle of SFT, it lacks the
flexibility needed to extend its ideas to neural network training scenarios. To address this limitation,
we have developed a more general mathematical framework that refines the approach, making it both
more elegant and adaptable. We will discuss this framework in detail in the next section.

5 GAME-THEORETIC FORMULATION

In this section, we present a mathematical framework for fine-tuning approaches that preserve
diversity. We begin by highlighting a key observation from Section 4: introducing a meta-level
mechanism helps govern the the logit flow, such as determining sparse updates and defining stopping
rules. Mathematically, this corresponds to the usage of an auxiliary variable. This insight motivates
the development of a framework that integrates such an auxiliary variable. We find that a game-
theoretic framework (Goodfellow et al., 2014; Jolicoeur-Martineau, 2019) is well-suited for this
purpose, as it naturally introduces an additional player.

Specifically, our proposed mathematical framework is formally presented as follows:

min
f

L(f, q) , ExEyreal⇠p(·|x)Eygene⇠q(·|x)

⇥
h
�
log f(ygene|x)� log f(yreal|x)

�⇤
(3)

max
q

Q(f, q) , ExEygene⇠q(·|x) [log f(y
gene

|x)] + � · H(q(·|x)). (4)

In this framework, the term yreal represents the supervised label in the dataset, while ygene cor-
responds to the model-generated output. For clarity, yreal aligns with the target token and ygene

aligns with the source token in the probability transfer framework. The function h is monotonically
increasing function (e.g., a linear function), and q is a distribution similar to f . Notably, q serves as
the auxiliary variable introduced to regulate the process, achieving the functions of sparse updates
and proper termination introduced in Section 4.

A simple explanation of our framework is that we aim to maximize the log-probability f for real
data while minimizing the log-probability probability for model-generated data, as expressed in
Equation (3). Simultaneously, we optimize the auxiliary variable q to enhance its performance by
treating log f as a objective function. However, this overview omits key insights into the underlying
approach. In the following section, we will provide a more detailed explanation of our framework.

5.1 UNDERSTANDING THE GAME

In this section, we explain the game-theoretic framework and connect it to the probability transfer
theory developed in Section 4. For clarity, we adopt the same toy setting as in Section 4 and calculate
the gradient with respect to ✓. For a specific sample where yreal = i, the gradient is given by:

�r✓L(f✓, q) =
KX

j=1,j 6=i

wi j · ei j , (5)

wi j = q(j|x)h0(log f✓(j|x)� log f✓(i|x)).

The form is similar to the CE flow in Proposition 1, but it introduces additional terms, q and h, to
enable greater flexibility in design. We will explore the design of h and q, and show that, in certain
cases, the framework can cover the CE formulation and the GEM prototype discussed in Section 4.

Design of h: The choice of the function h directly affects the magnitude of wij . If h(z) = z (a linear
function), we simply have h0(z) ⌘ 1, resulting in uniform weighting for probability adjustments.
This corresponds to the algorithmic design in Section 4. Inspired by (Jolicoeur-Martineau, 2019;
Sun et al., 2020; Rafailov et al., 2023), we also explore the design h(z) = log sigmoid(�z),

5

Published as a conference paper at ICLR 2025

ensuring that logits redistributed from source tokens equal those received by the target token:

Logits from source tokens =
KX

j=1,j 6=i

f✓(j|x)

= 1� f✓(i|x) = Logits to the target token.

Building on the above understanding, we will highlight the limitations of CE and introduce our
proposed techniques.

7

How to Design Auxiliary Variable? 

4321 4321 43214321

CE GEM

all-to-one update sparse update

unbounded transfer adap]ve termina]on

distribu]on collapse diversity-keeping

Figure 1: Comparison of learning schemes: CE v.s. GEM (� = 0). The arrows illustrate the
probability movement directions during the learning process, with Token 3 as the target token.

Limitation 1 of CE: All-to-One Probability Transfer. CE loss implements a logit flow mechanism
where probability mass from all non-target tokens is transferred to the target token. This approach
penalizes all non-target tokens regardless of their semantic relevance or contextual appropriateness.
For example, in the sentence “I like coffee”, while “coffee” is the target, reducing the logit and proba-
bility of “tea”—a semantically related and contextually plausible token—may harm generalization.
This limitation is especially critical in LLMs, as they are extensively pre-trained and encode rich
knowledge across many tokens. The all-to-one flow dynamic disrupts these carefully learned token
relationships, potentially reducing output diversity and contributing to knowledge forgetting.

Proposed Technique 1: Sparse Update. To address this limitation, we propose a sparse update
strategy. Instead of considering all source tokens, we select only pivotal tokens for probability transfer.
For illustration, we introduce a simple approach: we identify the pivotal token as the one with the
highest model confidence: j 2 argmax f(·|x). The underlying intuition is clear: the model only
corrects its most confident prediction if it is incorrect (i.e., does not match the target label).

However, this technique alone is insufficient in the asymptotic case. As training progresses and
the pivotal token’s probability diminishes through repeated updates, the flow mechanism naturally
shifts to other high-probability tokens. This cascading effect eventually approaches the dense update
behavior of CE as probabilities of all source tokens are sequentially reduced. This observation
highlights the need for a principled approach to terminate probability transfer at an appropriate stage.

Limitation 2 of CE: Unbounded Probability Transfer. The CE optimization process lacks a
natural termination point for probability transfer. The logit flow continues indefinitely until all source
token probabilities approach zero, causing the distribution to collapse and concentrate entirely on the
target token. This represents an undesirable convergence point that eliminates distribution diversity.
Fundamentally, this issue stems from CE’s implicit assumption that observed data should be assigned
maximum likelihood, without preserving reasonable probability for alternative tokens.

Proposed Technique 2: Adaptive Termination.To prevent distribution collapse, we introduce an
intuitive stopping criterion: halt the probability transfer once the target token i becomes the most
probable token in the distribution. Formally, if i 2 argmax f(·|x), we stop further update. This
supports the assumption that while the observed data should be adjusted to increase its likelihood,
other possibilities should still be considered, so the probability of the observed data should not be
forced to 1. Our stopping rule is designed to ensure that, after learning, greedy decoding can output
the correct label. An additional advantage of this rule is that, due to early termination, it keeps the
resultant distribution close to its initial state, thereby mitigating forgetting.

The two techniques outlined above form the foundation for the initial prototype design of our proposed
algorithm, GEM (Game-theoretic Entropy Maximization). The meaning and rationale behind the
name will be explained in detail in Section 5. For reference, we outline its procedure below and
provide a visual illustration in Figure 1.

4

Technique 2: Sparse Update

Technique 1: Adaptive Termination

Procedure of 
Our Method #2

#1
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Our Insight: Dimension Increase
Published as a conference paper at ICLR 2025

While the target token i /2 argmax f✓k(·|x), continue the following steps.
• Calculate the model’s best prediction j = argmax f(·|x)

• Decrease the logit for source token j by learning rate ⌘ and weight wi j :
✓k+1[j] = ✓k[j]� ⌘ ⇤ wi j

• Increase the logit for the target token i in a similar manner:
✓k+1[i] = ✓k[i] + ⌘ ⇤ wi j

While this prototype is conceptually sound and aligns with the guiding principle of SFT, it lacks the
flexibility needed to extend its ideas to neural network training scenarios. To address this limitation,
we have developed a more general mathematical framework that refines the approach, making it both
more elegant and adaptable. We will discuss this framework in detail in the next section.

5 GAME-THEORETIC FORMULATION

In this section, we present a mathematical framework for fine-tuning approaches that preserve
diversity. We begin by highlighting a key observation from Section 4: introducing a meta-level
mechanism helps govern the the logit flow, such as determining sparse updates and defining stopping
rules. Mathematically, this corresponds to the usage of an auxiliary variable. This insight motivates
the development of a framework that integrates such an auxiliary variable. We find that a game-
theoretic framework (Goodfellow et al., 2014; Jolicoeur-Martineau, 2019) is well-suited for this
purpose, as it naturally introduces an additional player.

Specifically, our proposed mathematical framework is formally presented as follows:

min
f

L(f, q) , ExEyreal⇠p(·|x)Eygene⇠q(·|x)

⇥
h
�
log f(ygene|x)� log f(yreal|x)

�⇤
(3)

max
q

Q(f, q) , ExEygene⇠q(·|x) [log f(y
gene

|x)] + � · H(q(·|x)). (4)

In this framework, the term yreal represents the supervised label in the dataset, while ygene cor-
responds to the model-generated output. For clarity, yreal aligns with the target token and ygene

aligns with the source token in the probability transfer framework. The function h is monotonically
increasing function (e.g., a linear function), and q is a distribution similar to f . Notably, q serves as
the auxiliary variable introduced to regulate the process, achieving the functions of sparse updates
and proper termination introduced in Section 4.

A simple explanation of our framework is that we aim to maximize the log-probability f for real
data while minimizing the log-probability probability for model-generated data, as expressed in
Equation (3). Simultaneously, we optimize the auxiliary variable q to enhance its performance by
treating log f as a objective function. However, this overview omits key insights into the underlying
approach. In the following section, we will provide a more detailed explanation of our framework.

5.1 UNDERSTANDING THE GAME

In this section, we explain the game-theoretic framework and connect it to the probability transfer
theory developed in Section 4. For clarity, we adopt the same toy setting as in Section 4 and calculate
the gradient with respect to ✓. For a specific sample where yreal = i, the gradient is given by:

�r✓L(f✓, q) =
KX

j=1,j 6=i

wi j · ei j , (5)

wi j = q(j|x)h0(log f✓(j|x)� log f✓(i|x)).

The form is similar to the CE flow in Proposition 1, but it introduces additional terms, q and h, to
enable greater flexibility in design. We will explore the design of h and q, and show that, in certain
cases, the framework can cover the CE formulation and the GEM prototype discussed in Section 4.

Design of h: The choice of the function h directly affects the magnitude of wij . If h(z) = z (a linear
function), we simply have h0(z) ⌘ 1, resulting in uniform weighting for probability adjustments.
This corresponds to the algorithmic design in Section 4. Inspired by (Jolicoeur-Martineau, 2019;
Sun et al., 2020; Rafailov et al., 2023), we also explore the design h(z) = log sigmoid(�z),

5

Procedure of 
Our Method

What is the magic? Can we generalize this to neural network training?
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other possibilities should still be considered, so the probability of the observed data should not be
forced to 1. Our stopping rule is designed to ensure that, after learning, greedy decoding can output
the correct label. An additional advantage of this rule is that, due to early termination, it keeps the
resultant distribution close to its initial state, thereby mitigating forgetting.

The two techniques outlined above form the foundation for the initial prototype design of our proposed
algorithm, GEM (Game-theoretic Entropy Maximization). The meaning and rationale behind the
name will be explained in detail in Section 5. For reference, we outline its procedure below and
provide a visual illustration in Figure 1.

While the target token i /2 argmax f✓k(·|x), continue the following steps.
• Calculate the model’s best prediction j = argmax f(·|x)

• Decrease the logit for source token j by learning rate ⌘ and weight wi j :
✓k+1[j] = ✓k[j]� ⌘ ⇤ wi j

• Increase the logit for the target token i in a similar manner:
✓k+1[i] = ✓k[i] + ⌘ ⇤ wi j

While this prototype is conceptually sound and aligns with the guiding principle of SFT, it lacks the
flexibility needed to extend its ideas to neural network training scenarios. To address this limitation,
we have developed a more general mathematical framework that refines the approach, making it both
more elegant and adaptable. We will discuss this framework in detail in the next section.

5 GAME-THEORETIC FORMULATION

In this section, we present a mathematical framework for fine-tuning approaches that preserve
diversity. We begin by highlighting a key observation from Section 4: introducing a meta-level
mechanism helps govern the the logit flow, such as determining sparse updates and defining stopping
rules. Mathematically, this corresponds to the usage of an auxiliary variable. This insight motivates
the development of a framework that integrates such an auxiliary variable. We find that a game-
theoretic framework (Goodfellow et al., 2014; Jolicoeur-Martineau, 2019) is well-suited for this
purpose, as it naturally introduces an additional player.

Specifically, our proposed mathematical framework is formally presented as follows:

min
f

L(f, q) , ExEyreal⇠p(·|x)Eygene⇠q(·|x)

⇥
log f(ygene|x)� log f(yreal|x)

⇤
(3)

max
q

Q(f, q) , ExEygene⇠q(·|x) [log f(y
gene

|x)] + � · H(q(·|x)). (4)

In this framework, the term yreal represents the supervised label in the dataset, while ygene cor-
responds to the model-generated output. For clarity, yreal aligns with the target token and ygene

aligns with the source token in the probability transfer framework. The function h is monotonically
increasing function (e.g., a linear function), and q is a distribution similar to f . Notably, q serves as
the auxiliary variable introduced to regulate the process, achieving the functions of sparse updates
and proper termination introduced in Section 4.

A simple explanation of our framework is that we aim to maximize the log-probability f for real
data while minimizing the log-probability probability for model-generated data, as expressed in
Equation (3). Simultaneously, we optimize the auxiliary variable q to enhance its performance by
treating log f as a objective function. However, this overview omits key insights into the underlying
approach. In the following section, we will provide a more detailed explanation of our framework.

5.1 UNDERSTANDING THE GAME

In this section, we explain the game-theoretic framework and connect it to the probability transfer
theory developed in Section 4. For clarity, we adopt the same setting as in Section 4 and calculate the
gradient with respect to ✓. For a specific sample where yreal = i, the gradient is given by:

�r✓L(f✓, q) =
KX

j=1,j 6=i

wi j · ei j , (5)
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then h0(z) = sigmoid(z). In this case, wi j becomes adaptive: it takes a higher value when
log f(yreal|x) > log f(ygene|x) and a lower value otherwise. This adaptability ensures that the
model focuses more on cases where it struggles to distinguish between real and generated data.

Design of q: Our design of q follows an optimization problem in Equation (4). Specifically, we have
the optimal solution:

argmax
q

Q(q, f) =

⇢
�j(x) with j = argmax fi(·|x) if � = 0
softmax(1/� ⇤ log f(y|x)) if � > 0 (6)

That is, q is a shifted distribution derived from f . This transformation is visualized in Figure 2.

Figure 2: Transformation from f to q by optimizing the problem in Equation (4).

Note that q serves as a “controller” for prioritizing source tokens in the logit flow viewpoint. It
determines both the selection of source tokens and the strength of their associated flows. When
� = 0, q = �j(x) (i.e., the Dirac distribution) selects the single token with the highest probability
in f , which corresponds exactly to the algorithm prototype in Section 4. When � = 1, q becomes
identical to f with h set to a linear function, reducing to the CE formulation. For intermediate
values � 2 (0, 1), q represents a soften distribution where high-probability modes become more
prominent, while low-probability regions are further suppressed. This results in reduced contribution
from minority tokens in the probability transfer, thereby protecting their probabilities. Thus, for small
� values, the framework encourages sparse updates and safeguards tokens that may not appear in the
current dataset but were learned during pre-training.

We clarify that while our framework shares a similar structure with GANs (Goodfellow et al., 2014;
Jolicoeur-Martineau, 2019), it has a totally different meaning. Specifically, GANs were originally
designed for image generation tasks, where a discriminator network is additionally introduced to
measure the distance between distributions of real and generated images. We do not follow this
storyline. Unlike in GANs, where measuring distances between image distributions is challenging,
computing distances between token distributions in language models is simple due to the discrete
nature of token distributions. As we have explained, the introduction of the variable q in our
framework is to control the direction and mangnitude of probability transfer during distribution
matching—an objective that is distinct from the goal of GANs.

5.2 THEORETICAL GUARANTEE

Building on our earlier illustrative analysis with a single data point, we now formally present a theory
with the real data distribution p.
Proposition 2. Assume h(z) = z in Equation (3). For a data distribution satisfying p(y|x) > 0, with
� > 0, the game in Equations (3) and (4) posses a unique Nash equilibrium point:

⇢
f? = softmax(� ⇤ log p)
q? = p (7)

Furthermore, f? corresponds to the optimal solution to the distribution matching problem (with
1/� = (� + 1)), which minimizes the reverse KL divergence with entropy regularization:

f? = argmin
f

Ex [DKL(f(·|x), p(·|x))� �H(f(·|x))] . (8)

This result provides an intuitive understanding of the distribution matching problem that our frame-
work addresses: it drives the distribution f close to p while encouraging the diversity through entropy
regularization. This is exactly the goal we set in Section 3. We note that our analysis relies on � > 0,
as the equilibrium point is unique in this scenario. For � = 0 and p is the Dirac distribution, we can
still apply the stopping criterion discussed in Section 4. However, the choice of f? is neither unique
nor analytically tractable, introducing additional complexities that we leave for future work.

6
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5 GAME-THEORETIC FORMULATION

In this section, we present a mathematical framework for fine-tuning approaches that preserve
diversity. We begin by highlighting a key observation from Section 4: introducing a meta-level
mechanism helps govern the the logit flow, such as determining sparse updates and defining stopping
rules. Mathematically, this corresponds to the usage of an auxiliary variable. This insight motivates
the development of a framework that integrates such an auxiliary variable. We find that a game-
theoretic framework (Goodfellow et al., 2014; Jolicoeur-Martineau, 2019) is well-suited for this
purpose, as it naturally introduces an additional player.

Specifically, our proposed mathematical framework is formally presented as follows:

min
f

L(f, q) , ExEyreal⇠p(·|x)Eygene⇠q(·|x)

⇥
log f(ygene|x)� log f(yreal|x)

⇤
(3)

max
q

Q(f, q) , ExEygene⇠q(·|x) [log f(y
gene

|x)] + � · H(q(·|x)). (4)

In this framework, the term yreal represents the supervised label in the dataset, while ygene cor-
responds to the model-generated output. For clarity, yreal aligns with the target token and ygene

aligns with the source token in the probability transfer framework. The function h is monotonically
increasing function (e.g., a linear function), and q is a distribution similar to f . Notably, q serves as
the auxiliary variable introduced to regulate the process, achieving the functions of sparse updates
and proper termination introduced in Section 4.

A simple explanation of our framework is that we aim to maximize the log-probability f for real
data while minimizing the log-probability probability for model-generated data, as expressed in
Equation (3). Simultaneously, we optimize the auxiliary variable q to enhance its performance by
treating log f as a objective function. However, this overview omits key insights into the underlying
approach. In the following section, we will provide a more detailed explanation of our framework.

5.1 UNDERSTANDING THE GAME

In this section, we explain the game-theoretic framework and connect it to the probability transfer
theory developed in Section 4. For clarity, we adopt the same setting as in Section 4 and calculate the
gradient with respect to ✓. For a specific sample where yreal = i, the gradient is given by:

�r✓L(f✓, q) =
KX

j=1,j 6=i

wi j · ei j , (5)

wi j = q(j|x).

The form is similar to the CE flow in Proposition 1, but it introduces additional terms, q and h, to
enable greater flexibility in design. We will explore the design of h and q, and show that, in certain
cases, the framework can cover the CE formulation and the GEM prototype discussed in Section 4.

Design of h: The choice of the function h directly affects the magnitude of wij . If h(z) = z (a linear
function), we simply have h0(z) ⌘ 1, resulting in uniform weighting for probability adjustments.
This corresponds to the algorithmic design in Section 4. Inspired by (Jolicoeur-Martineau, 2019;
Sun et al., 2020; Rafailov et al., 2023), we also explore the design h(z) = log sigmoid(�z),
then h0(z) = sigmoid(z). In this case, wi j becomes adaptive: it takes a higher value when
log f(yreal|x) > log f(ygene|x) and a lower value otherwise. This adaptability ensures that the
model focuses more on cases where it struggles to distinguish between real and generated data.

Design of q: Our design of q follows an optimization problem in Equation (4). Specifically, we have
the optimal solution:

argmax
q

Q(q, f) =

⇢
�j(x) with j = argmax fi(·|x) if � = 0
softmax(1/� ⇤ log f(y|x)) if � > 0 (6)

That is, q is a shifted distribution derived from f . This transformation is visualized in Figure 2.Note that q serves as a “controller” for prioritizing source tokens in the logit flow viewpoint. It
determines both the selection of source tokens and the strength of their associated flows. When
� = 0, q = �j(x) (i.e., the Dirac distribution) selects the single token with the highest probability
in f , which corresponds exactly to the algorithm prototype in Section 4. When � = 1, q becomes
identical to f with h set to a linear function, reducing to the CE formulation. For intermediate
values � 2 (0, 1), q represents a soften distribution where high-probability modes become more
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Figure 2: Transformation from f to q by optimizing the problem in Equation (4).

prominent, while low-probability regions are further suppressed. This results in reduced contribution
from minority tokens in the probability transfer, thereby protecting their probabilities. Thus, for small
� values, the framework encourages sparse updates and safeguards tokens that may not appear in the
current dataset but were learned during pre-training.

We clarify that while our framework shares a similar structure with GANs (Goodfellow et al., 2014;
Jolicoeur-Martineau, 2019), it has a totally different meaning. Specifically, GANs were originally
designed for image generation tasks, where a discriminator network is additionally introduced to
measure the distance between distributions of real and generated images. We do not follow this
storyline. Unlike in GANs, where measuring distances between image distributions is challenging,
computing distances between token distributions in language models is simple due to the discrete
nature of token distributions. As we have explained, the introduction of the variable q in our
framework is to control the direction and mangnitude of probability transfer during distribution
matching—an objective that is distinct from the goal of GANs.

5.2 THEORETICAL GUARANTEE

Building on our earlier illustrative analysis with a single data point, we now formally present a theory
with the real data distribution p.

Proposition 2. For a data distribution satisfying p(y|x) > 0, with � > 0, the game in Equations (3)
and (4) posses a unique Nash equilibrium point:

⇢
f? = softmax(� ⇤ log p)
q? = p (7)

Furthermore, f? corresponds to the optimal solution to the distribution matching problem (with
1/� = (� + 1)), which minimizes the reverse KL divergence with entropy regularization:

f? = argmin
f

Ex [DKL(f(·|x), p(·|x))� �H(f(·|x))] . (8)

This result provides an intuitive understanding of the distribution matching problem that our frame-
work addresses: it drives the distribution f close to p while encouraging the diversity through entropy
regularization. This is exactly the goal we set in Section 3. We note that our analysis relies on � > 0,
as the equilibrium point is unique in this scenario. For � = 0 and p is the Dirac distribution, we can
still apply the stopping criterion discussed in Section 4. However, the choice of f? is neither unique
nor analytically tractable, introducing additional complexities that we leave for future work.

We note that Proposition 3 also has an important computational implication. While the distribution
matching problem in Equation (8) is theoretically well-defined, it is computationally intractable in
practice. In contrast, our game-theoretic formulation provides a feasible alternative. To understand
why, consider the decomposition of the reverse KL divergence:

DKL(f(·|x), p(·|x)) =
X

y

f(y|x) log
f(y|x)

p(y|x)
=

X

y

f(y|x) log f(y|x)�
X

y

f(y|x) log p(y|x).

In practice, we only have access to finite samples drawn from p rather than direct knowledge of
log p(y|x). Consequently, the term

P
y f(y|x) log p(y|x) cannot be easily estimated from finite

samples, rendering the formulation in Equation (8) impractical. This difficulty contrasts with the
CE formulation, which corresponds to a forward KL divergence that can be easily estimated from

7
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finite samples.3 We note that a similar situation arises in GANs (Goodfellow et al., 2014), where the
game-theoretic approach effectively solves the Jensen-Shannon divergence minimization problem,
even though the Jensen-Shannon divergence itself cannot be directly estimated from data samples.

5.3 TRAINING ALGORITHM: GEM

In this section, we present a algorithm for training neural networks within our framework. For clarity,
in the main text, we state the token-level version, where f(y|x) denotes the one-step conditional
distribution, while the extension to the sequence-level is provided in Appendix B. Specifically, we
parameterize f✓ using a Transformer and optimize its parameter ✓ directly. The overall algorithm
is outlined in Algorithm 1, which incorporates two key features: single-model optimization and
variance-reduced gradient estimation. These features ensure that our algorithm is highly scalable,
requiring nearly the same GPU memory and computational speed as optimizing the standard CE loss.

Algorithm 1 GEM

Input: Dataset D = {(xi, yreali )}
1: for iteration k = 1, . . . ,K do
2: Set qk = softmax(1/� ⇤ log f✓k)
3: Loss LGEM(✓) =

P
i

P
ygene qk(y

gene
|xi) · h

�⇥
log f✓(ygene|xi)� log f✓(yreali |xi)

⇤�

4: Update ✓k+1 = ✓k � ⌘ ·r✓LGEM(✓) |✓=✓k
Output: Generative model f✓K+1

Single-Model Optimization. Recall that we have a closed-form solution for q (see Equation (4)),
which significantly simplifies the training procedure. Specifically, the update rules are as follows:

⇢
f✓k+1 = f✓k �r✓L(f✓, qk) |✓=✓k
qk+1 = argmaxq Q(f✓k+1 , q) = softmax(1/� ⇤ log f✓k+1)

Specifically, q can be computed simply by shifting the logits of f✓, eliminating the need to maintain a
separate network for q. This reduces the memory burden of training. In contrast, GANs require an
additional neural network (i.e., the discriminator), which must be trained alongside the main model.

Variance-reduced Gradient Estimation. Building on the above observation, we slightly adapt the
notation to define the loss function. Let ✓ denote the parameters of the distribution f . Given training
samples (xi, yreali ), the loss is defined as:

LGEM(✓) =
X

i

X

ygene

qk(y
gene

|xi) · h
�⇥
log f✓(y

gene
|xi)� log f✓(y

real
i |xi)

⇤�
.

A notable feature is that it computes the true expectation over qk. This reduces the variance of the
gradient estimator and improves the training stability. This again differs from GANs, where stochastic
gradient estimation introduces randomness from both the data distribution p and the generated
distribution q. We note that these optimization properties arise from the fact that distributions in
LLMs have finite support, while GANs typically operate in continuous domains.

6 EXPERIMENTS

In this section, we present experiments to validate the effectiveness of the proposed framework. Our
experiments are designed to demonstrate that GEM achieves comparable downstream performance
to CE while offering two additional benefits. First, by preserving diversity, GEM generates diverse
outputs during inference, thereby improving test-time scaling performance. Second, preserving
diversity also helps mitigate forgetting, enabling GEM to reduce the alignment tax.

Set-up. We fine-tune the pre-trained Llama-3.1-8B model with the UltraFeedback dataset (Cui
et al., 2024). This dataset contains prompts from instruction datasets like Evol-Instruct and UltraChat,

3To clarify a common point of confusion regarding divergence functions: in the context of LLMs, since
tokens are discrete, both the forward and reverse KL divergences are relatively easy to optimize, when properly
estimated, and converge to the same solution. This differs from GANs, where the optimization involves images,
and different divergence functions typically lead to different solutions in practice. However, when entropy
regularization is involved, the forward and reverse KL divergences lead to different optimal solutions regardless
of the optimization difficulty. For a more detailed discussion, please refer to Appendix D.

8

Idea: block-wise gradient-descent and coordinate descent

Feature 1: Single-model optimization

There is no need of storing and explicit training of q

Feature 2: Variance-reduced gradient estimation

Published as a conference paper at ICLR 2025

finite samples.3 We note that a similar situation arises in GANs (Goodfellow et al., 2014), where the
game-theoretic approach effectively solves the Jensen-Shannon divergence minimization problem,
even though the Jensen-Shannon divergence itself cannot be directly estimated from data samples.

5.3 TRAINING ALGORITHM: GEM

In this section, we present a algorithm for training neural networks within our framework. For clarity,
in the main text, we state the token-level version, where f(y|x) denotes the one-step conditional
distribution, while the extension to the sequence-level is provided in Appendix B. Specifically, we
parameterize f✓ using a Transformer and optimize its parameter ✓ directly. The overall algorithm
is outlined in Algorithm 1, which incorporates two key features: single-model optimization and
variance-reduced gradient estimation. These features ensure that our algorithm is highly scalable,
requiring nearly the same GPU memory and computational speed as optimizing the standard CE loss.

Algorithm 1 GEM

Input: Dataset D = {(xi, yreali )}
1: for iteration k = 1, . . . ,K do
2: Set qk = softmax(1/� ⇤ log f✓k)
3: Loss LGEM(✓) =

P
i

P
ygene qk(y

gene
|xi) · h

�⇥
log f✓(ygene|xi)� log f✓(yreali |xi)

⇤�

4: Update ✓k+1 = ✓k � ⌘ ·r✓LGEM(✓) |✓=✓k
Output: Generative model f✓K+1

Single-Model Optimization. Recall that we have a closed-form solution for q (see Equation (4)),
which significantly simplifies the training procedure. Specifically, the update rules are as follows:

⇢
f✓k+1 = f✓k �r✓L(f✓, qk) |✓=✓k
qk+1 = argmaxq Q(f✓k+1 , q) = softmax(1/� ⇤ log f✓k+1)

Specifically, q can be computed simply by shifting the logits of f✓, eliminating the need to maintain a
separate network for q. This reduces the memory burden of training. In contrast, GANs require an
additional neural network (i.e., the discriminator), which must be trained alongside the main model.

Variance-reduced Gradient Estimation. Building on the above observation, we slightly adapt the
notation to define the loss function. Let ✓ denote the parameters of the distribution f . Given training
samples (xi, yreali ), the loss is defined as:

LGEM(✓) =
X

i

X

ygene

qk(y
gene

|xi) ·
⇥
log f✓(y

gene
|xi)� log f✓(y

real
i |xi)

⇤
.

A notable feature is that it computes the true expectation over qk. This reduces the variance of the
gradient estimator and improves the training stability. This again differs from GANs, where stochastic
gradient estimation introduces randomness from both the data distribution p and the generated
distribution q. We note that these optimization properties arise from the fact that distributions in
LLMs have finite support, while GANs typically operate in continuous domains.

6 EXPERIMENTS

In this section, we present experiments to validate the effectiveness of the proposed framework. Our
experiments are designed to demonstrate that GEM achieves comparable downstream performance
to CE while offering two additional benefits. First, by preserving diversity, GEM generates diverse
outputs during inference, thereby improving test-time scaling performance. Second, preserving
diversity also helps mitigate forgetting, enabling GEM to reduce the alignment tax.

Set-up. We fine-tune the pre-trained Llama-3.1-8B model with the UltraFeedback dataset (Cui
et al., 2024). This dataset contains prompts from instruction datasets like Evol-Instruct and UltraChat,

3To clarify a common point of confusion regarding divergence functions: in the context of LLMs, since
tokens are discrete, both the forward and reverse KL divergences are relatively easy to optimize, when properly
estimated, and converge to the same solution. This differs from GANs, where the optimization involves images,
and different divergence functions typically lead to different solutions in practice. However, when entropy
regularization is involved, the forward and reverse KL divergences lead to different optimal solutions regardless
of the optimization difficulty. For a more detailed discussion, please refer to Appendix D.
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≈2x efficiency≈2x efficiency

(a) Chat (b) Code generation

Figure 4: Performance of test-time scaling. The results demonstrate that GEM achieves better perfor-
mance with the same sampling budget and is more efficient in reaching comparable performance.

and responses generated by models such as GPT-4 and Llama-2-7B/13B/70B-Chat. Following (Yu
et al., 2023; Liu et al., 2023; Cui et al., 2024), we set the learning rate to 2 ⇥ 10�5, employing a
cosine learning rate decay schedule, and use a macro batch size of 128. The maximum sequence
length, encompassing both the prompt and response, is set to 2,048 tokens. Models are trained for
three epochs. Detailed experimental settings are described in Appendix E.

We implement GEM with � = 0.7, using the log sigmoid function for h, as it provides more
adaptivity than the linear function. We note that the linear function also works in practice, but the
log sigmoid function yields slightly better performance. Thus, for ease presentation, we report
only the performance with the log sigmoid function unless mentioned. Our primary baseline is the
standard CE loss. Additionally, we explore a variant of CE incorporating a weight decay of 0.1, which
has been commonly used in previous studies (Ouyang et al., 2022; Bai et al., 2022). We refer to this
approach as CE + WD. The NEFT method (Jain et al., 2023), which perturbs the input embedding
with random noise in fine-tuning to mitigate overfitting, has also been implemented.

6.1 IMPROVING DIVERSITY AND TEST-TIME SCALING

Figure 3: Enhancing output diversity
boosts the win rate when using BoN.

In this section, we demonstrate that through implicit entropy
maximization, GEM enhances output diversity. This is evi-
dent from the entropy values of the generative distribution:
0.42 (CE), 0.41 (CE + WD), 0.43 (NEFT), and 0.76 (GEM).
Consequently, GEM is more likely to sample diverse solu-
tions and has a higher chance of identifying better solutions
during inference through repeated sampling. This aligns with
the recent trend of test-time scaling (Snell et al., 2024; Brown
et al., 2024; Wu et al., 2024). We illustrate this benefit us-
ing two tasks: chat and code generation, while mathematical
reasoning tasks are explored in Appendix F.

Chat. We assess the model’s chat ability using the best-
of-N sampling strategy. We prompt the trained models to
answer 805 questions from the AlpacaEval dataset (Li
et al., 2023). For each question, the model generates 32 responses, from which a reward model selects
the best response. We employ the reward model FsfairX-LLaMA3-RM-v0.14, which has top
performance on RewardBench (Lambert et al., 2024). The selected response is compared with
GPT-4’s response with the win rate reported in Figure 4 (a).

The evaluation reveals that weight decay does not lead to performance improvements. On the other
hand, NEFT shows strong performance, partly attributed to its longer responses, as highlighted in
(Jain et al., 2023). However, GEM outperforms CE, with a 3.1-point (6.6% relative) increase in win
rate. Additionally, we note that GEM achieves comparable performance to CE while requiring about
2x fewer sampling costs. To further understand this improvement, we evaluate output diversity using

4https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1
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GEM improves the performance limit of RL training

[https://tangible-polo-203.notion.site/]

same model & same SFT dataset

[Li, Ziniu, et al. "Remax: A simple, effective, and efficient 
reinforcement learning method for aligning large 
language models." ICML 2024.]

‣ Task: optimize CoT (reasoning steps) 
to answer math questions

‣ Reward: accuracy of final reward

‣ RL Algo: ReMax

‣ Model: Qwen-2.5-3B
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(a) Chat (b) Code generation

Figure 4: Performance of test-time scaling. The results demonstrate that GEM achieves better perfor-
mance with the same sampling budget and is more efficient in reaching comparable performance.

ARC GSM8K HellaSwag MMLU TruthfulQA Winogrande

Llama3.1-8B

Figure 5: Performance on tasks from the OpenLLM leaderboard. The results indicate that GEM
outperforms CE, demonstrating a lower alignment tax.

In this task, we observe that for pass@100, weight decay slightly improves the performance of
CE, increasing it from 75.5 to 76.6, while NEFT shows no significant improvement, maintaining a
performance of 75.6. In contrast, GEM achieves a 7-point improvement, reaching a performance of
82.5, which represents a 9.3% relative increase. Furthermore, GEM proves to be highly efficient in
test-time scaling, requiring only about half the sampling budget to achieve comparable performance.

We note that in our experiments, the performance using BON or pass rate serves as an estimate of self-
improvement. Specifically, high-quality self-generated samples produced by GEM can be distilled
back into the model, enhancing its zero-shot performance (see (Sessa et al., 2024)). Therefore, we
believe GEM can exhibit a more effective scaling in post-training, a topic we plan to explore in future
work. We also note that in the above evaluation, GEM enhances output diversity without sacrificing
its direct generation performance: in chat, CE (24.5) vs. GEM (24.9), and in code generation, CE
(32.7) vs. GEM (32.6). This contrasts with other techniques, which often increase diversity at the
cost of performance degradation; see Appendix D for further discussion.

6.2 MITIGATING FORGETTING AND REDUCING ALIGNMENT TAX

Figure 6: Staying close to the pre-
trained model helps mitigate forgetting.

In this section, we show that GEM also helps mitigate
forgetting and reduce alignment tax. We evaluate the mod-
els across six tasks: ARC, GSM8K, HellaSwag, MMLU,
TruthfulQA, and WinoGrande, as listed on the OpenLLM
leaderboard. Results are presented in Figure 5.

We observe that after SFT, performance declines on most
tasks for the baseline models, with CE showing the most sig-
nificant drops. However, GEM exhibits different behavior:
for tasks such as ARC and HellaSwag, performance does
not decrease. On average across six tasks, GEM shows an
80% reduction in alignment tax, with a 0.3-point drop for
GEM compared to a 1.5-point drop for CE. This behavior
aligns with our method, which introduces q to encourage
sparse updates of tokens and prevent forgetting. Further
validation can be seen by examining the distance from the pre-trained model. Specifically, we measure
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