Preserving Diversity in Supervised Fine-tuning of Large Lange Models

The Chinese University of Hong Kong, Shenzhen

Ziniu Li

2025-03-23

Overview of This Talk

Evolution of Large Language Models

Key Differences Between LLMs and Traditional Deep Learning

Our Research Contributions

Key Scientific Insights

PRESERVING DIVERSITY IN SUPERVISED FINE-TUNING OF LARGE LANGUAGE MODELS

Ziniu Li^{1,2}, Congliang Chen^{1,2}, Tian Xu³, Zeyu Qin⁴, Jiancong Xiao⁵, Zhi-Quan Luo^{1,2}, and Ruoyu Sun^{1,2,†}

ICLR 2025

NeurIPS 2024 FITML Workshop Best Paper Runner-up

Ziniu Li (CUHKSZ)

Congliang Chen (CUHKSZ)

Tian Xu (NJU)

Zeyu Qin (HKUST)

Why do we study this topic?

Is it practically impactful?

Jiancong Xiao (Upen)

Zhi-Quan Luo (CUHKSZ)

Ruoyu Sun (CUHKSZ)

This Talk

How do we design our approach?

Are there new scientific discoveries?

Part I: Overview of LLMs

LLMs and Transformers

Transformers perform **next-token-prediction**

LLM Pre-training

LLM Pre-training = Transformers + Next-token-Prediction + Textbook Data

Next-token Prediction is enough for AGI

[https://www.youtube.com/watch?v=YEUclZdj_Sc]

Scaling Law

Pre-training

Knowledge Acquisition

: Explain the pre-training of LLMs. Prompt

Llama2-7B: Explain the pre-training of LLMs. Explain the pre-training of LLMs. The LLMs are pre-trained on a large amount of unlabeled data, [...]

repetitive response

Pre-trained LLMs: Knowledge Learner without Task Context

Pre-training is not Enough Yet

Post-training

Ability Reinforcement

: Explain the pre-training of LLMs. Prompt

Llama2-7B-Chat: Large language models (LLMs) are trained on a variety of tasks and datasets before they are fine-tuned for specific natural language processing (NLP) tasks. Here's an overview of some common pretraining tasks and their goals: [...]

well-organized response

Post-trained LLMs: Enhanced Multi-task Solver

Post-training is Powerful

Post-training enhances performance for down-stream tasks

Pre-training as we know it will end

What comes next? The long term is about agentic, reasons, undersatnds, is self aware

[Talk at NeurIPS 2024]

2020 (era of GPT-3) LLMs are few-shot learners "fine-tuning with few examples is enough"

What's Next?

2024 (era of OpenAl o1) LLMs are strong reasoners "post-training is equally important as pre-training"

Part II: Motivation

LLM Post-Training

Action / Response

12

Supervised Fine-tuning

SFT Data Example

Prompt

Q: Can Geoffrey Hinton have a conversation with George Washington?

Label

A: The answer is No because Geoffrey Hinton was born in 1947, while [...]

- Objective max $\mathbb{E}_{y \sim p(\cdot|x)}[\log f_{\theta}(y|x)]$
 - *x*: prompt *y*: response/completion (label)
 - *p*: data distribution (from teacher)
 - f_{θ} : distribution of LLM

LLMs learn to understand the question (task) and provide relevant answers

Reinforcement Learning

Output Diversity

Question: Marissa is hiking a 12-mile trail. She took 1 hour to walk the first 4 miles, then another hour to walk the next two miles. If she wants her average speed to be 4 miles per hour, what speed (in miles per hour) does she need to walk the remaining distance?

Answer: 6

SFT Reduces Model Output Diversity

Revisiting SFT

SFT aims to align pre-trained model outputs to RL/human-preferred format (outputs that are easy to read, interpret, and verify)

Why does Diversity Fate in SFT?

CE seems Effective for ...

Understanding Generation Tasks

Classification

$$\mathcal{X} \mapsto \mathcal{Y}$$

(function: many-to-one)

Remark for LLMs:

responses are not unique (SFT) data is hard to cover all cases

Illustration

(variation in formats, styles, or reasoning paths)

CE Loss (Empirical)

$$\min_{\theta} - \sum_{(x_i, y_i) \sim D} y_i^{\mathsf{T}} \log f_{\theta}(y_i | x_i)$$

 (x_i, y_i) : input-label pair

 $f_{\theta}(y \mid x)$: the conditional prediction distribution

 θ : parameters of neural network

Theory of CE

CE Loss (Population)

$$\max_{\theta} \mathbb{E}_{x \sim \rho} \mathbb{E}_{y \sim p(\cdot | x)} \log f_{\theta}(y | x)$$

Distribution Matching 21

Challenge: We need to protect LLM's output diversity during SFT

Understanding:

CE easily fits to the empirical data and loses the diversity

Goal: Designing new formulation and algorithm for SFT

Summary

Part III: Our Approach GEM

A Naive Approach for Diversity

CE + Entropy Regularization

 $\max_{f} \underbrace{\mathbb{E}_{x} \mathbb{E}_{y \sim p(\cdot|x)} [\log f(y|x)]}_{f} + \beta \underbrace{\mathbb{E}_{x} \mathbb{E}_{y \sim f(\cdot|x)} [-\log f(y|x)]}_{f}$ $-D_{\mathrm{KL}}(p,f)$ +constant $\mathcal{H}(f)$

Entropy regularizer encourages diversity via increasing the tail of distribution

Whats the largest star in our galaxy?

Hello! Atlantis is a legendary city that was said to have existed in ancient Greece. According to the story, it was a highly advanced and prosperous city that was located on an island in the ocean. [...]

Hello! Atlantis Documentary is a 2019 American documentaryéhoFLICT film directed by Já oblík and produced by Werner Herzog. The film explores the history and legacy of Atlantis, \Box an ancient Greek city-state that was said to have_calendar knowledge and advanced technology, through interviews with scholars and historians.ython

LLMs

Analyzing Cross-Entropy Loss

Setting: $y \sim f_{\theta}(\cdot | x)$ and $f_{\theta}(i | x) =$

Gradient of CE: assuming *i*-th toke $-\nabla_{\theta} \mathcal{L}_{CE}(\theta) = [-f_{\theta}(1|x), -f_{\theta}(2|x)]$

Implication:

Target token (label)'s logit \uparrow while other tokens' logits \downarrow

$$exp(\theta_i)$$

$$\sum_{j=1}^{K} exp(\theta_j)$$

$$(\ldots, 1-f_{\theta}(i|x), \ldots, -f_{\theta}(K|x)].$$

Distribution Matching as Flow Transfer

Proposition 1. The gradient of CE specifies a logit flow map: each source token j transfers $f_{\theta}(j|x)$ logits to the target token i. Formally,

$$\begin{vmatrix} -\nabla_{\theta} \mathcal{L}_{CE}(\theta) &= \sum_{\substack{j=1, j \neq i}}^{K} w_{i} \\ w_{i \leftarrow j} &= f_{\theta}(j|x) \\ e_{i \leftarrow j} &= [0 \cdots] \\ i\text{-th} \end{vmatrix}$$

Example:	$f_{\theta} = [0.1, 0]$
Gradient:	g = [-0.1]
Flow perspective:	g = 0.1 * [

Logits flow from source tokens = Logits flow to target token

 $\begin{array}{l} \text{Label: #2} \\ \text{J} \\ \text{J} \\ \text{J} \\ \text{J} \\ \text{J} \\ \text{J} \\ \text{Label: #2} \\ \text{J} \\$

Limitations of CE

Limitation 1: Unbounded Transfer

Limitation 2: All-to-one Update

While there exists source token $j \neq i$ with $f_{\theta_k}(j|x) > 0$, continue the following steps.

• Decrease the logit for source token j by learning rate η and weight $w_{i \leftarrow j}$:

$$\theta_{k+1}[j] = \theta_k[j] - \eta * w_{i \leftarrow j}$$

• Increase the logit for the target token *i* in a similar manner:

$$\theta_{k+1}[i] = \theta_k[i] + \eta * w_{i \leftarrow j}$$

Proposed Solutions

While the target token $i \notin \operatorname{argmax} f_{\theta_k}(\cdot|x)$, continue the following steps.

• Calculate the model's best prediction $j = \operatorname{argmax} f(\cdot|x)$

• Decrease the logit for source token j by learning rate η and weight $w_{i \leftarrow j}$:

$$\theta_{k+1}[j] = \theta_k[j] - \eta * w_{i \leftarrow j}$$

Increase the logit for the target token *i* in a similar manner:

$$\theta_{k+1}[i] = \theta_k[i] + \eta * w_{i \leftarrow j}$$

Our Insight: Dimension Increase

Procedure of

Our Method

Introduce an auxiliary variable (dimension increase) that

While the target token $i \notin \operatorname{argmax} f_{\theta_k}(\cdot | x)$, continue the following steps.

• Calculate the model's best prediction $j = \operatorname{argmax} f(\cdot | x)$

• Decrease the logit for source token j by learning rate η and weight $w_{i \leftarrow j}$:

$$\theta_{k+1}[j] = \theta_k[j] - \eta * w_{i \leftarrow j}$$

• Increase the logit for the target token *i* in a similar manner:

$$\theta_{k+1}[i] = \theta_k[i] + \eta * w_{i \leftarrow j}$$

What is the magic? Can we generalize this to neural network training?

implements the scheme of sparse update and adaptive termination

Towards a Game Formulation

$$\begin{split} \min_{f} \quad \mathcal{L}(f,q) &\triangleq \mathbb{E}_{x} \mathbb{E}_{y^{\text{real}} \sim p(\cdot|x)} \mathbb{E}_{y^{\text{gene}} \sim q(\cdot|x)} \left[\log f(y^{\text{gene}}|x) - \log f(y^{\text{real}}|x) \right] \\ \max_{q} \quad \mathcal{Q}(f,q) &\triangleq \mathbb{E}_{x} \mathbb{E}_{y^{\text{gene}} \sim q(\cdot|x)} \left[\log f(y^{\text{gene}}|x) \right] + \beta \cdot \mathcal{H}(q(\cdot|x)). \end{split}$$

Intuitive Understanding:

- generated data
- q: increase the energy induced by $\log f$ with entropy regularization

High-level design: introduce an **another player** q to the distribution matching

f: increase the likelihood on real data and decrease likelihood on the

Understanding the Game

$$-\nabla_{\theta} \mathcal{L}(f_{\theta}, q) = \sum_{\substack{j=1,\\ w_{i \leftarrow j}}}^{K} w_{i \leftarrow j} = q(j)$$

meta-controller

Connection with Probability Transfer

and (4) posses a unique Nash equilibrium point:

 $1/\beta = (\gamma + 1)$, which minimizes the <u>reverse</u> KL divergence with entropy regularization:

$$f^{\star} = \underset{f}{\operatorname{argmin}} \mathbb{E}_{x} \begin{bmatrix} D_{\mathrm{KL}}(f) \\ \downarrow \\ \downarrow \end{bmatrix}$$
Terminology
Reserve KL Min
Role
Fit the data dist

For $\beta = 0$, there are **multiple** Nash equilibrium points with non-closed-form solutions \rightarrow future work

Training Algorithm

Idea: block-wise gradient-descent and coordinate descent

$$\begin{cases} f_{\theta_{k+1}} = f_{\theta_k} - \nabla_{\theta} \mathcal{L}(f_{\theta}, \theta_k) \\ q_{k+1} = \operatorname{argmax}_q \mathcal{Q}(f_{\theta_{k+1}}) \end{cases}$$

Feature 1: **Single**-model optimization There is no need of storing and explicit training of q

Feature 2: Variance-reduced gradient estimation

$$\mathcal{L}_{ ext{GEM}}(heta) = \sum_i \sum_{y^{ ext{gene}}} q_k(y^{ ext{gene}} | x_i) \; .$$

We use the exact distribution (in GANs, stochastic approximation is used)

Discussion: Difference with GANs

GAN (generative adversarial network)

TaskImage Generation

Challange Estimation the distance among two images is hard

Idea Introduction of discriminator

Computation Complexity

High

(game-theoretic entropy maximization)

GEM

Text Generation

Overfitting the data and losing output diversity

Introduction of flow-controller

Low

Part IV: Empirical Results

Test-Time Scaling

- Evaluation Method: Best-of-N Sampling
- Model: Llama-3.1-8B; Dataset: Ultrafeedback

RLHF Alignment (Chat)

Code Generation

GEM requires about 2x less sampling budget for comparable performance

Math Reasoning

[https://tangible-polo-203.notion.site/]

- Task: optimize CoT (reasoning steps) to answer math questions
- Reward: accuracy of final reward
- Model: Qwen-2.5-3B
- RL Algo: ReMax

[Li, Ziniu, et al. "Remax: A simple, effective, and efficient reinforcement learning method for aligning large language models." ICML 2024.]

GEM improves the performance limit of RL training

Alignment Tax

Thank You!

Paper

Code